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Abstract

This dissertation deals with the development of computational strategies that enable the
implementation of sophisticated first-principles dynamic models in on-line chemical process
operations. During the last years, it has been recognized that first-principles models can lead
to a tighter integration of the decision-making hierarchy and, consequently, to an increased
process performance. The development and implementation of model-based applications
involves the extensive use of parameter estimation, state estimation, data reconciliation,
model predictive control, and real-time optimization techniques which require the solution
of optimization problems constrained by differential and algebraic equations (DAEs). As
models of increasing sophistication are considered, the computational complexity of these
problems becomes a crucial obstacle. In this work, we present strategies targeted towards
this issue. The strategies are based on simultaneous full-discretization approaches and
sparsity-exploiting interior-point nonlinear programming (NLP) solvers. In addition, they
make use of classical numerical linear algebra techniques and NLP sensitivity concepts.

We first derive strategies for large-scale parameter estimation including standard least-
squares and advanced errors-in-variables formulations. Here, we exploit the multi-set struc-
ture of these problems inside the NLP solver and derive strategies to extract large-scale
covariance information directly from the Karush-Kuhn-Tucker (KKT) matrix. In addition,
we establish connections between the numerical properties of the KKT matrix, second order
optimality conditions and observability in order to verify the uniqueness of the estimates
through the NLP solver.

We then derive on-line synchronization strategies for moving horizon state estimation
(MHE) and nonlinear model predictive control (NMPC). These strategies are based on an
advanced-step principle which allows to accommodate large-scale dynamic models in on-line
environments. Here, we use the dynamic model to predict the future state and measure-
ments, use this information to solve reference problems in between sampling times, and
correct these solutions on-line using NLP sensitivity. This predictor-corrector type strategy
allows to minimize the on-line computational time by at least two orders of magnitude
and to decouple the MHE and NMPC problems solved in background. We establish rig-
orous bounds on the loss of optimality, sufficient stability conditions and connections with
traditional strategies such as Riccati-like regulators and Kalman filters.

Finally, we implement the proposed computational strategies in the state-of-the-art NLP
solver IPOPT and demonstrate the concepts through small-scale case studies. Scale-up
and computational performance are demonstrated in a large-scale low-density polyethylene
tubular reactor process. In this process, we use a detailed first-principles reactor model to
derive an economics-oriented operational framework able to improve its overall profitability.
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Chapter 1

Introduction

In this chapter, we describe the overall context and objectives of the research problem

under consideration. In particular, we discuss computational challenges that arise in the

incorporation of first-principles dynamic models in the decision-making hierarchy of chem-

ical processes. In addition, we introduce background information and terminology used

throughout the dissertation.

1.1 Current Practices in Hierarchical Process Operations

The operation of a chemical process involves a formidable number of decisions that need

to be updated in order to compensate for exogenous disturbances (e.g. market prices and

product demands) and endogenous disturbances (e.g. unexplainable physico-chemical phe-

nomena) [83, 58]. These disturbances evolve at drastically different time-scales ranging

from a few seconds to months and years. Because of this high level of complexity, one

would expect that a centralized and systematic decision-making entity able to take all these

factors into account would achieve the maximum process performance. However, this ideal

approach is currently infeasible due to practical issues such as computational complexity.

As a consequence, the centralized decision-making entity is commonly decomposed into a

hierarchy of decision-makers taking care of separate tasks such as planning, scheduling,

set-point setting, multivariable control, single-loop regulatory control, and sensors and ac-

tuators. This hierarchy is illustrated in Figure 1.1.
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1.1 Current Practices in Hierarchical Process Operations

Planning/Scheduling

Target-Setting

Multivariable Control

Regulatory Control

Estimation and
Data Reconciliation

Figure 1.1: Example of decision-making hierarchy in chemical process.

1.1.1 Planning and Scheduling

The planning/scheduling layer makes long-term decisions based on product demands, raw

materials, and product prices that change rather slowly (months/weeks). This level uses

forecasts of exogenous disturbances such as product demands and prices, to find the optimal

future policies of the product type(s), production and inventory levels that maximize some

measure of the future process profitability. Nowadays, the planning/scheduling decisions are

obtained systematically from computationally intensive mixed integer programming formu-

lations [55]. To avoid a currently unmanageable complexity, these high-level tasks treat

the chemical process as a black-box by using rough estimates of its performance limitations

(e.g. capacity, transition times). In other words, they do not attempt to manipulate any of

the process operating conditions. Consequently, they implicitly assume that a lower-level

decision-maker will be able to manipulate the process conditions to achieve the desired
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production plan/schedule at all times.

1.1.2 Target Setting

The production plan/schedule is communicated to a target setting layer. Traditionally,

this has been a human operator that will adjust the process operating conditions (e.g.

output set-points) in order to satisfy the specified production levels and quality. The oper-

ating conditions are originally dictated by the nominal design specifications and are refined

progressively with experience in order to improve the process performance. At this level,

performance is normally measured in terms of current process profitability (e.g. product

throughput and/or energy consumption). In most cases, experience-based operating poli-

cies are suboptimal since the process depends on many factors that are difficult to manage

simultaneously by the operator.

With advances in computer power, the development of process simulation platforms and

advances in nonlinear programming (NLP) algorithms, it has become possible to use first-

principles steady-state models to adjust the process operating conditions systematically and

in real-time. This gave rise to what is known today as real-time optimization (RTO) tech-

nology [87]. The main advantage of RTO is that feasible operating conditions (e.g. satisfy

energy and material balances) can be found through the rigorous model. In other words,

RTO allows a centralized management of the available raw materials and energy resources.

In addition, since the optimization is performed on-line, RTO provides a mechanism to react

to changes and reject long-term (hours-days) exogenous disturbances. This technology has

been taking over the set-point setting layer in many continuous petrochemical processes.

The success of RTO technology has been dramatic, leading to millions of dollars in an-

nual savings [122]. However, this technology is only applicable to processes operated under

nearly stationary conditions.

Both the RTO and the human operator neglect the inherent process dynamics (e.g. short-
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term disturbances). In addition, they do not manipulate any of the dynamic degrees of

freedom of the process (e.g. inputs) [117, 118]. Instead, the current output set-point

is obtained assuming that a lower-level decision-maker will be able to adjust the process

inputs to reject any short-term disturbances and keep the process at the desired target at

all times.

1.1.3 Multivariable and Regulatory Control

The operating conditions coming from the target setting layer are communicated as set-

points of the measured output process variables to some sort of feedback control layer. Up

to the 1970’s, the dominating industrial practice was to communicate each target to a single-

loop PID controller. The controller will keep its corresponding output at the desired set-

point by rejecting short-term disturbances. A practical problem with single-loop controllers

is that they act on a single target without taking into account the multiple interactions

arising in a particular unit or in the whole process [101]. As a consequence, these controllers

are normally difficult to tune and decouple.

Industrial control practice has shifted almost completely to advanced multivariable control

strategies. This has been mostly done in the form of what is known as model predictive

control (MPC) [101, 17]. Here, a dynamic process model is used to forecast the future impact

of the manipulated inputs over the controlled outputs. With these predictive capabilities,

it is possible to compute optimal future policies of the manipulated inputs that minimize

the transition time to the desired output targets. The main advantage of MPC is that it

can handle multivariable interactions implicity through the model. In addition, it allows

to impose constraints directly in the problem formulation which is a convenient way of

incorporating process knowledge in the controller. The dominating MPC technology uses

input-output, data-driven, linear dynamic models identified from process step responses

[101].
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A crucial limitation of data-driven dynamic models is that they are constructed around a

fixed operating point. In processes operated over a wide range of conditions such as batch

processes or continuous polymerization processes, a fixed model is usually not sufficient

to achieve an acceptable control performance [123]. The end of the 1980’s witnessed the

development of first-principles dynamic models for MPC which has given rise to what is

known today as Nonlinear Model Predictive Control or NMPC1. The use of NMPC has

brought many important economic benefits, especially in inherently dynamic processes such

as batch processes and in continuous processes exhibiting frequent and expensive transitions

[10, 123, 48]. As seen in Table 1.1, the use of first-principles models in MPC presents

important advantages but also gives rise to important practical issues.

From a computational point of view, data-driven models are manageable since they are

described over a relatively small state-space including the measured process outputs. These

dynamic models are usually described in discrete-time algebraic form. First-principles mod-

els, on the other hand, involve a large state-space including both measured outputs and

many unmeasured variables. These models follow fundamental conservation laws which

are described by computationally intensive Differential and Algebraic Equations (DAEs).

While sophisticated models are currently used in NMPC applications, the computational

complexity of these models is still a crucial factor blocking the widespread use of NMPC

[15, 10].

Since the MPC or NMPC input actions already take multivariable interactions into ac-

count, they can be communicated as separate input set-points to single-loop controllers.

Each controller manipulates the valve actuator to obtain the desired input set-point. High-

frequency measurement sensors (e.g. temperatures) and low-frequency laboratory measure-

ments (e.g. product quality) are used to monitor the process and close the control and

target setting loops.
1The term NMPC alludes to any generic nonlinear model (first-principles or data-driven). Here, we make

an explicit distinction between first-principles (NMPC) and data-driven models (MPC).
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Data-Driven Models First-Principles Models
Development Cost Low High
Portability Low High
Window of Validity Narrow Wide
Control Scope Measured Measured and Unmeasured
Computational Complexity Low High

Table 1.1: Comparison of advantages and disadvantages of data-driven and first-principles
process models.

1.1.4 On-line Estimation and Data Reconciliation

Nowadays, the development of data-driven process models can be done systematically

through the design and analysis of process dynamic responses [101]. The development and

implementation of first-principles models can be, on the other hand, a time-consuming and

expensive task. If the process model is not currently available from simulation libraries, the

model needs to be developed from the scratch using high-quality laboratory or pilot plant

data.

For the implementation of a first-principles model in on-line environments, process mea-

surements are reconciled to the model in order to close the material and energy balances and

to filter out measurement errors through a data reconciliation task. In addition, artificial

disturbances or parameters are added to the model and tuned on-line in order to account

for unmodelled time-varying phenomena (e.g. catalyst deactivation, coking, fouling) en-

countered in industrial environments. In RTO, on-line model tuning is normally known as

on-line parameter estimation [87]. Both the data reconciliation and the estimation problem

are solved using measurements at the current steady-state operating point. For dynamic

models, the on-line model tuning task is known as on-line state estimation [107, 104]. Here,

we use a trajectory of multiple measurements to infer the current process state and distur-

bances. As with NMPC, the use of first-principles models is an important obstacle blocking

the widespread use of on-line estimation technology.
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1.2 Emerging Practices in Hierarchical Process Operations

Note that the dominating decision-making hierarchy is top-down and one-directional. One-

directional decisions imply that the higher-levels do not exploit the lower-level degrees of

freedom. In addition, the models and objectives at each level are drastically different.

For instance, in planning/scheduling the objective is to maximize future profit (no process

model), in RTO is to maximize current profit (steady-state first-principles model), and

in MPC is minimize transition time (data-driven model). This implies that there exist

significant losses of information as we move down the hierarchy. In other words, there is a

weak integration among the decision-making layers.

The vertical integration of the decision-making hierarchy is an important problem that

is attracting increased attention both from industry and academia. Many researchers are

exploring formulations and algorithms to integrate tasks at different levels such as planning

and scheduling [54], scheduling and target setting [24], target setting and control [65], and

scheduling and control [94, 115], among others.

Consider the traditional interaction between RTO and MPC. First of all, a fundamental

limitation of RTO is that it has to wait until the process is at steady-state. In addition,

it does not make use of the process inputs or dynamic degrees of freedom. To overcome

this, researchers have considered the possibility of adding an economic objective function

directly in the MPC controller formulation [117]. While important benefits can be obtained

with these formulations, this approach is limited by the fact that MPC uses an input-output

data-driven model. In other words, the MPC objective can only be translated into simplified

metrics in terms of measured variables such as unit throughput and reboiler duty. These

metrics are inconsistent with the much more general RTO objective. In addition, a typical

problem encountered in industrial RTO practice is that the targets computed through the

first-principles steady-state model might become infeasible to the MPC controller or they

might even have opposite steady-state gains [92, 118]. This scenario is illustrated in Fig-
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ure 1.2. As a conclusion, model inconsistency leads to a weak hierarchical integration and

profitability losses.

Time

Set-Point RTO Feasible MPC Transition

Infeasible MPC Transition

Figure 1.2: Inconsistency of RTO and data-driven MPC controller.

The possibility of using consistent models in NMPC and RTO has motivated the emerging

paradigm of dynamic real-time optimization (D-RTO) sketched in Figure 1.3 [58, 83, 118].

Many powerful alternatives to integrate target setting and control layers can be derived

using these concepts. For instance, one could consider using NMPC with an RTO economic

objective to optimize the transitions between RTO steady states, or one could even consider

merging both layers into a centralized decision-making layer. Finally, the ability to make

economic decisions through the controller allows us to quantify the potential benefits of

incorporating sophisticated model-based control technology in operations [39].

1.3 Research Problem Statement and Scope of Work

As we have seen, incorporating first-principles dynamic models in on-line operations can

lead to a tighter integration of the decision-making hierarchy and, consequently, to an

increased process performance. However, a crucial problem blocking this practice is the

computational complexity of the associated optimization problems. In particular, solution

time becomes an important issue in on-line tasks since it limits the ability to provide fast

feedback to the process.

The objective of this dissertation is to identify computational bottlenecks arising in the
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Nonlinear MPC
Maximize Future Profit

s.t. Dynamic First-Principles

Real-Time Optimization
Maximize Current Profit

s.t. Steady-State First-Principles Dynamic 
Real-Time Optimization

Maximize Future Profit
s.t. Dynamic First-Principles

Figure 1.3: Dynamic Real-Time Optimization (D-RTO).

context of model-based process operations, and to propose strategies to overcome them. We

consider specific tasks such as parameter estimation, data reconciliation, state estimation,

nonlinear model predictive control, and real-time optimization. In addition, we seek to

establish connections between computational and theoretical aspects of these tasks. Finally,

we demonstrate the potential benefits of the developments through realistic scenarios arising

in the operation of industrial processes.

1.4 Thesis Outline

This dissertation is organized in three parts. In the first part, we derive a computational

framework for DAE-constrained optimization. The framework makes use of a simultaneous

full-discretization approach to transform general DAE-constrained optimization problems

into large-scale and sparse NLP problems. The advantages and disadvantages of this ap-

proach are contrasted against those of competing approaches in Chapter 2. In Chapter 3,
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we discuss the use of full-space interior-point (IP) solvers for the solution of the resulting

NLPs. We extend the capabilities of these solvers through a set of post-optimal analysis

strategies. In particular, we present NLP sensitivity strategies to compute fast approximate

solutions for neighboring problems and strategies to extract reduced Hessian information

from the KKT matrix.

In the second part, we discuss the application of the proposed computational strategies

to tackle issues arising in model-based operations. In Chapter 4 we discuss the decompo-

sition of large multi-set parameter estimation problems and present strategies to extract

parameter covariance information from the NLP solver. In Chapter 5 we discuss the role

of feedback delays on the stability of NMPC controllers and derive on-line synchronization

strategies based on NLP sensitivity to overcome them. In Chapter 6 we derive on-line syn-

chronization strategies for MHE. In Chapter 7 we discuss issues arising from the coupling

of on-line synchronization strategies for NMPC and MHE.

The third part includes Chapter 8 in which we apply the proposed developments to

industrial low-density polyethylene (LDPE) tubular reactors. The dissertation closes in

Chapter 9 where general concluding remarks and recommendations for future work are

presented.
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Chapter 2

DAE-Constrained Optimization

In this chapter, we discuss advantages and disadvantages of different approaches to the so-

lution of optimization problems constrained by differential and algebraic equations (DAEs).

We make special emphasis on the computational advantages of the simultaneous full-

discretization approach. In addition, we discuss advantages of the orthogonal collocation

on finite elements discretization scheme.

2.1 Problem Formulation

In this dissertation, we consider general DAE-constrained optimization problems of the
form,

min

u(t), p, z0 Φ := ϕ(zd(tf )) (2.1a)

s.t.
dzd
dt

= fd(zd(t), za(t), u(t), p, η) (2.1b)

0 = fa(zd(t), za(t), u(t), p, η) (2.1c)
zd(0) = z̄0 (2.1d)

zL
d ≤ zd(t) ≤ zU

d (2.1e)

zL
a ≤ za(t) ≤ zU

a (2.1f)

uL ≤ u(t) ≤ uU (2.1g)

pL ≤ p ≤ pU (2.1h)

where t is the scalar independent dimension defined in the fixed domain [0, tf ], zd ∈

<nd is a vector of differential variables or states, za ∈ <na is a vector of algebraic states,

u(t) ∈ <nu are the inputs or controls, p ∈ <np are parameters and η represents fixed

problem data. Vector fd(·) : <nd+na+nu+np → <nd denotes the differential equations, fa(·) :
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<nd+na+nu+np → <na denotes the algebraic equations and h(·) : <nd+na+nu+np → <nh are

general inequality constraints. The initial conditions of the differential states are given by

z̄0. For simplicity in the notation, the objective function ϕ(·) : <nd → < is assumed to be

of Mayer-type. Nevertheless, note that any integral or Bolza-type objective function of the

form,

Φ :=
∫ tf

0
ϕ(zd(t), za(t), u(t), p, η)dt (2.2)

can be reformulated to Mayer form by adding artificial state variables [27].

In chemical engineering applications the DAEs (2.1b)-(2.1c) represent the system model.

The differential equations represent conservation equations (i.e. material, energy and mo-

mentum) and the algebraic equations represent constitutive relations to compute physical,

thermodynamic and transport properties. The general formulation (2.1) can represent dif-

ferent optimization problems arising in the context of chemical process operations such as

optimal control, parameter estimation, and state estimation. For instance, in optimal con-

trol problems the degrees of freedom are the inputs and the objective is least-squares or

economic, in parameter estimation problems the degrees of freedom are the parameters and

inputs with a least-squares objective, in state estimation the degrees of freedom are the

parameters, inputs and initial states and the objective is least-squares. Finally, note that if

the system is described by partial differential, ordinary differential and algebraic equations

(PDAEs), we can discretize along the spatial dimensions to recover form (2.1).

In this dissertation, we will also be interested in analyzing the effect of perturbations on

the problem data η on the solution of problem (2.1). The data can be used to represent

measurement information in estimation problems or the current state of the dynamic system

in optimal control problems.
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2.2 Approaches to DAE-Constrained Optimization

Several approaches exist to solve the DAE-constrained optimization problem (2.1). In the

context of optimal control, these problems were solved until the 1970s using an indirect or

variational approach, based on Pontryagin’s Maximum Principle [21, 100]. For problems

without inequality constraints, the resulting optimality conditions can be formulated and

solved as a two-point boundary value problem. Indirect approaches have solid theoretical

foundations based on calculus of variations. However, for problems requiring the handling

of active inequality constraints, finding the correct switching structure as well as suitable

initial guesses for state and adjoint variables is often very difficult. This limitation has

made the indirect approach less popular in more general applications.

Direct approaches try to cast problem (2.1) as a nonlinear programming (NLP) problem.

As a consequence, these approaches tend to be much more general and computationally

efficient. The main fundamental difference among direct approaches is the strategy used to

handle the continuous-time DAE model. In order to establish a brief comparison between

these approaches, we will consider the classical optimal control problem. In this problem, we

have fixed initial conditions z̄0 and parameters p and seek to find the control trajectory u(t)

over the time domain [0, tf ] that minimizes the performance index Φ. For future reference,

we will also partition the time domain [0, tf ] into N stages where the domain inside each

element k is given by t ∈ [tk, tk+1] with k = 0, ..., N − 1, t0 = 0 and tN = tf . Using this

representation, we can pose problem (2.1) as a multi-stage problem of the form,
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min

uk(t), zk Φ :=
N−1∑
k=0

ϕk(zk
d(tk+1)) (2.3a)

s.t.
dzk

d

dt
= fd(zk

d(t), zk
a(t), uk(t), p, η) (2.3b)

0 = fa(zk
d(t), zk

a(t), uk(t), p, η) (2.3c)

zk
d(tk) = zk (2.3d)

zk+1 = zk
d(tk+1) (2.3e)

z0 = z̄0 (2.3f)

zL
d ≤ zk

d(t) ≤ zU
d (2.3g)

zL
a ≤ zk

a(t) ≤ zU
a (2.3h)

uL ≤ uk(t) ≤ uU (2.3i)
k = 0, ..., N − 1.

Note the introduction of intermediate variables zk that link the state profiles of the differ-

ential states between neighboring stages or elements. This is sketched in Figure 2.1.

2.2.1 Single-Shooting Approach

In the single-shooting or sequential approach, the continuous control trajectory u(t) is dis-

cretized or parameterized [119, 120]. For instance, we can consider a piece-wise approxi-

mation were we fix the control uk(t) = uk inside each element k. The discretized control

trajectory can be passed to a DAE solver that integrates the DAEs over the entire domain

[0, tf ] in a single call. This fully eliminates the DAE model from the optimization problem.

An NLP solver is used to obtain a new guess of the controls. If the NLP solver computes the

search step for the controls using an exact Newton’s method, it will require first and second-

order gradient information with respect to the controls. First-order gradient information

can be obtained efficiently through direct sensitivity or adjoint formulations. However, ob-

taining second derivative information through the DAE solver can become computationally

expensive. The need for second derivatives can be avoided through Quasi-Newton approxi-

mations but this also leads to weaker convergence properties of the NLP solver. Sequential
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Figure 2.1: Schematic representation of multi-stage DAE-constrained optimization problem.

strategies are relatively easy to construct and to apply. Efficient implementations of the

single-shooting approach incorporate highly reliable DAE solvers (e.g., DASSL, DASOLV,

DAEPACK) and off-the-shelf NLP solvers as components. The use of DAE solvers allows to

handle stiff dynamic systems efficiently as they can modify the integration step adaptively

[80]. On the other hand, repeated numerical integration of the large-scale DAE model is

required, which becomes time consuming in large-scale problems. The overall computa-

tional complexity of single-shooting is favorable for problems with a large number of states.

However, the complexity does not scale well for problems with long time horizons and many

degrees of freedom [131, 34]. Moreover, it is well known that single-shooting approaches

cannot handle open loop instability [17, 45].

2.2.2 Multiple-Shooting Approach

Multiple shooting exploits the multi-stage structure of problem (2.3) [18]. Here, guesses

of the parameterized controls uk and of the initial conditions zk are considered at each

element k. Each integration is performed on the individual domain [tk, tk+1] to return

zk
d(tk+1). With this, the integration of the DAE and the evaluation of gradient information

can be done separately at each element. The NLP solver updates both uk and zk to minimize

the performance index Φ and simultaneously links the state profiles across elements as the

problem converges. As a result of this particular construction, this approach can handle
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open-loop unstable systems efficiently, which is an important advantage over single-shooting

[18, 80, 34].

An important issue arising in multiple-shooting is that, when the DAE model contains

many dynamic states, the gradients with respect to the states form large dense blocks inside

the NLP solver [80]. Although several strategies have been proposed to handle this issue,

the overall computational complexity of this approach does not scale well for problems with

many dynamic states. Nevertheless, the complexity of multiple-shooting is very favorable

for problems with long time horizons. [131, 34].

2.2.3 Simultaneous Full-Discretization Approach

The simultaneous full-discretization approach approximates the continuous-time profiles of

the states and controls at each element k through numerical quadrature schemes [14, 29, 27,

16]. With this, the discretized DAE model can be added directly as algebraic constraints in

the NLP formulation. The NLP solver simultaneously solves the DAE model as it minimizes

the performance index. In other words, the discretized DAE system is solved only once,

at the optimal point, and therefore avoids repeated integrations of the large-scale DAE

model. Another consequence of this is that the approach can handle open-loop unstable

systems. Finally, since the NLP is in completely algebraic form, first and second order

derivative information can be computed cheaply through modeling platforms or automatic

differentiation routines.

A problem that arises in the full-discretization approach is that a large number of dis-

cretization points and mesh refinement techniques might be required to handle stiff dynamic

systems [13, 17, 80]. On the other hand, the ability to exploit the sparsity of the DAE model

directly through the NLP solver has been identified as a crucial advantage of this approach

over single and multiple shooting [131]. The overall computational complexity of this ap-

proach is favorable for problems with a large number of states and degrees of freedom. In
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this dissertation, we will see that this favorable computational complexity becomes advan-

tageous, particularly in on-line applications. Consequently, we will focus on the specifics of

this approach. In the following section, we present details of a particular strategy for the

discretization of DAE-constrained optimization problems.

Orthogonal Collocation on Finite Elements

Orthogonal collocation on finite elements is a widely used discretization scheme for the

solution of DAE-constrained optimization problems. This is mainly due to its high accuracy

and numerical stability properties, which make it particularly attractive for handling stiff

dynamic systems [16]. In the context of optimal control, important convergence properties

have also been established between this discretization scheme and the optimality conditions

arising in variational approaches [106, 66].

To explain the mechanics of the orthogonal collocation scheme, we consider the DAE

system of problem (2.3) defined at element k,

dzk
d

dt
= fd(zk

d(t), zk
a(t), uk(t), p, η) (2.4a)

0 = fa(zk
d(t), zk

a(t), uk(t), p, η) (2.4b)

zk
d(tk) = zk. (2.4c)

It is possible to make an affine transformation of the time domain t ∈ [tk, tk+1] at each

element to τ = [0, 1] by defining t = hkτ with hk = tk+1 − tk. With this,

dzk
d

dτ
= hkfd(zk

d(τ), zk
a(τ), uk(τ), p, η) (2.5a)

0 = fa(zk
d(τ), zk

a(τ), uk(τ), p, η) (2.5b)

zk
d(0) = zk. (2.5c)

In an orthogonal collocation scheme, we approximate the state profiles using a family of

polynomials defined at a set of quadrature points τj , j = 1, ..., Nc on the domain τ = [0, 1].
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In other words,

z̃k
d(τ) ≈ zk

d(τ) (2.6a)

=
Nc∑
j=1

zk,j
d Ωj(τ) (2.6b)

where z̃k
d(τ) is the approximate profile, zk,j

d = zk
d(τj) are interpolation points and Ωj(τ) are

support or basis functions (polynomials in this case). The term collocation arises from the

fact that we choose the family of basis functions Ωj(τ), j = 1, ..., Nc in such a way that the

approximate profile z̃k
d(τ) is collocated or accommodated in order to exactly match the true

profile at a set of points τi , j = 1, ..., Nc. That is,

z̃k
d(τi) =

Nc∑
j=1

zk,j
d Ωj(τi) (2.7a)

= zk
d(τi), i = 1, ..., Nc. (2.7b)

Lagrange interpolation polynomials are particularly useful to derive collocation schemes.

These polynomials have the form,

Ωj(τ) =
Nc∏

k=1,k 6=j

τ − τk
τj − τk

=
τ − τ1
τj − τ1

τ − τ2
τj − τ2

. . .
τ − τNc

τj − τNc

. (2.8)

Note that these polynomials are of order Nc − 1 and satisfy,

Ωj(τi) =

 1, τi = τj

0, τi 6= τj
(2.9)

with this, the approximate profile constructed from Lagrange basis function satisfies the

collocation requirement (2.7).

The position of the collocation points τj is not arbitrary. These are normally chosen to

minimize the integral of the residuals between the approximate and the true profile along the

domain τ = [0, 1] [44]. The term orthogonal comes from the fact that the collocation points

are chosen as the roots of orthogonal polynomials. For instance, the roots of a Legendre
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polynomial are the quadrature points of a Gauss-Legendre quadrature scheme [30]. A K-th

degree Legendre polynomial is given by the formula [85],

PK(τ) =
1

2KK!
dK

dtK
[
(τ2 − 1)K

]
. (2.10)

These polynomials are orthogonal on the domain [−1, 1]. However, we are interested on

the domain [0, 1]. We can shift the Legendre polynomials through the affine transformation

τ ← 2τ − 1 to define the family of shifted Legendre polynomials P̃K(τ) [62],

P̃K(τ) =
1
K!

dK

dtK
[
(τ2 − τ)K

]
. (2.11)

The roots of these polynomials provide the quadrature points τj , j = 1, ..., Nc with K = Nc.

Gauss-Legendre provides the highest accuracy among collocation methods. However, a

practical problem arising in this scheme is that the collocation points lie strictly in the

interior of the domain τ ∈ (0, 1). Because of this, an extrapolation step is required to

match the state profiles of the current element k with those of the neighboring elements

k − 1 and k + 1. This becomes an important issue in the context of DAE-constrained

optimization where flexibility is often desired in order to impose constraints at the boundary

of the elements [16]. The Gauss-Legendre-Radau (Radau) quadrature scheme is a practical

approach to overcome some of these limitations. Here, we impose the constraint that the

last collocation point should lie at the boundary of the domain (τ = 1) [30, 16]. Since

the collocation points are chosen with one less degree of freedom, Radau quadrature is less

accurate than Gauss quadrature. In a Radau scheme, the collocation points are the roots

of the polynomial,

PK = P̃K(τ)− P̃K−1(τ). (2.12)

Here, τj > 0, τNc = 1 and K = Nc. Having the quadrature scheme, we proceed to transform

the continuous-time DAE system to algebraic form. First note that we can discretize the
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algebraic states and controls profiles at the same points as the differential states,

z̃k
a(τ) ≈ zk

a(τ) =
Nc∑
j=1

zk,j
a Ωj(τ) (2.13a)

ũk(τ) ≈ uk(τ) =
Nc∑
j=1

uk,jΩj(τ). (2.13b)

In addition, note that the derivative of the approximate differential state (2.6) with respect

to time becomes,

dz̃k
d(τ)
dτ

=
Nc∑
j=1

zk,j
d Ω̇j(τ). (2.14)

Substituting these expressions on the DAE system (2.5) we obtain,

Nc∑
j=1

zk,j
d Ω̇j(τ) = hkfd

 Nc∑
j=1

zk,j
d Ωj(τ),

Nc∑
j=1

zk,j
a Ωj(τ),

Nc∑
j=1

uk,jΩj(τ), p, η

 (2.15a)

0 = fa

 Nc∑
j=1

zk,j
d Ωj(τ),

Nc∑
j=1

zk,j
a Ωj(τ),

Nc∑
j=1

uk,jΩj(τ), p, η

 (2.15b)

Nc∑
j=1

zk,j
d Ωj(0) = zk. (2.15c)

In order to solve the discretized DAE system for a fixed set of inputs uk,j , we need to find

the unknown values zk,j
d , zk,j

a . This requires Nc(nd+na) equations. The required expressions

can be obtained by enforcing (2.5) at the collocation points τi, i = 1, ..., Nc. With this,

Nc∑
j=1

zk,j
d Ω̇j(τi) = hkfd

 Nc∑
j=1

zk,j
d Ωj(τi),

Nc∑
j=1

zk,j
a Ωj(τi),

Nc∑
j=1

uk,jΩj(τi), p, η

 (2.16a)

0 = fa

 Nc∑
j=1

zk,j
d Ωj(τi),

Nc∑
j=1

zk,j
a Ωj(τi),

Nc∑
j=1

uk,jΩj(τi), p, η

 (2.16b)

Nc∑
j=1

zk,j
d Ωj(0) = zk. (2.16c)

i = 1, ..., Nc.
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Since, by construction, the approximate profiles satisfy the collocation property,

Nc∑
j=1

zk,j
d Ωj(τi) ≡ zk,i

d ,

Nc∑
j=1

zk,j
a Ωj(τi) ≡ zk,i

a ,

Nc∑
j=1

uk,jΩj(τi) ≡ uk,i (2.17a)

we obtain,

Nc∑
j=1

zk,j
d Ω̇j(τi) = hkfd

(
zk,i
d , zk,i

a , uk,i, p, η
)

(2.18a)

0 = fa

(
zk,i
d , zk,i

a , uk,i, p, η
)

(2.18b)

Nc∑
j=1

zk,j
d Ωj(0) = zk. (2.18c)

i = 1, ..., Nc.

Finally, we can couple the discretized DAEs for all the finite elements. For this, we recall

that the last Radau collocation point is at the right boundary of each element. Conse-

quently, zk = zk−1,Nc

d , k = 1, ..., N and z0 = z̄0. Nevertheless, note that we still need

the extrapolation step (2.18c) to match the initial conditions on the left hand side of the

boundary.

An interesting family of discretization schemes results from the so-called monomial basis

representation [6, 16]. In particular, it has been found that orthogonal collocation on finite

elements schemes correspond to a particular class of implicit Runge Kutta methods [5]. For

instance, if we define an approximate profile of the derivative of the differential states as,

dz̃k
d(τ)
dτ

=
Nc∑
j=1

dzk,j
d

dτ
Ω̂j(τ) ≈

dzk
d(τ)
dτ

(2.19)

where Ω̂j(τ) is a Lagrange polynomial of order Nc defined at the Radau collocation points

τj , j = 1, ..., Nc. Assume that the approximate derivative profile (2.19) satisfies the following

properties,

z̃k
d(0) ≡ zk (2.20a)

dz̃k
d(τi)
dτ

≡
dzk

d(τi)
dτ

=
dzk,i

d

dτ
, i = 1, ..., Nc. (2.20b)
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With this, we can establish,∫ τ

0

dz̃k
d(τ̄)
dτ

dτ̄ =
∫ τ

0

Nc∑
j=1

dzk,j
d

dτ
Ω̂j(τ̄)dτ̄ (2.21a)

zk
d(τ)− zk =

Nc∑
j=1

dzk,j
d

dτ

∫ τ

0
Ω̂j(τ̄)dτ̄ (2.21b)

zk
d(τ) = zk +

Nc∑
j=1

dzk,j
d

dτ
Ω̄j(τ) (2.21c)

where Ω̄j(τ) :=
∫ τ

0
Ω̂j(τ̄)dτ̄ is a polynomial of order Nc + 1. Note that the collocation

conditions (2.20) require this polynomial to satisfy,

Ω̄j(0) = 0 (2.22a)

˙̄Ωj(τi) = Ω̂j(τi) =

 1, τi = τj

0, τi 6= τj
(2.22b)

so we can establish,

zk,i
d = zk +

Nc∑
j=1

Ω̄j(τi)
dzk,j

d

dτ
, i = 1, ..., Nc (2.23)

Finally, we define approximate profiles for the algebraic states and controls as,

z̃k
a(τ) =

Nc∑
j=1

zk,j
a Ω̂j(τ) (2.24a)

ũk(τ) =
Nc∑
j=1

uk,jΩ̂j(τ). (2.24b)

where Ω̂j(τ) is a Lagrange polynomial of order Nc. With this, we can express the discretized

DAE system over the entire time domain [0, tf ] as,

zk,i
d = zk + hk

Nc∑
j=1

Ω̄j(τi)fd

(
zk,j
d , zk,j

a , uk,j , p, η
)

(2.25a)

0 = fa(z
k,i
d , zk,i

a , uk,i, p, η) (2.25b)

zk+1 = zk,Nc

d , k = 0, ..., N − 1, i = 1, ..., Nc (2.25c)

z0 = z̄0 (2.25d)
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with hk = tk+1 − tk, k = 0, ..., N − 1 and tN = tf . It has been observed in practice that a

monomial basis representation of the collocation equations gives better conditions numbers

of the interpolation matrix. This is particularly relevant in large-scale applications [16]. In

addition, the monomial basis representation allows to analyze the properties of collocation

schemes based on widely studied properties of Runge-Kutta methods [5].

Having the discretized DAE model, we can express the DAE-constrained optimization
problem (2.3) as an NLP of the form,

min

zk,i
d , zk,i

a , uk,i, zk Φ :=
N−1∑
k=0

ϕk(zk,Nc

d ) (2.26a)

s.t. zk,i
d = zk + hk

Nc∑
j=1

Ω̄j(τi)fd

(
zk,j
d , zk,j

a , uk,j , p, η
)

(2.26b)

0 = fa(z
k,i
d , zk,i

a , uk,i, p, η) (2.26c)

zk+1 = zk,Nc

d (2.26d)
z0 = z̄0 (2.26e)

zL
d ≤ z

k,i
d ≤ z

U
d (2.26f)

zL
a ≤ zk,i

a ≤ zU
a (2.26g)

uL ≤ uk,i ≤ uU (2.26h)
k = 0, ..., N − 1, i = 1, ..., Nc.

Note that the above formulation assumes that one finite element is placed at each stage.

This can be easily generalized to allow for multiple finite elements per stage. Also note

that the NLP resulting from the full-discretization approach is a large-scale problem but

it is also very sparse due to the incorporation of the DAE model as constraints and due

to the structure induced by the finite element scheme. Nevertheless, note that since all

the complexity of the DAE model is now handled by the NLP solver, efficient solvers are

required.
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2.3 Concluding Remarks

In this chapter, we have summarized advantages and disadvantages of different approaches

to DAE-constrained optimization. In particular, we have emphasized that the ability

to avoid repetitive DAE integrations and the ability to exploit the sparsity of the DAE

model directly in the NLP solver are some of the most important advantages of the full-

discretization approach. In addition, we have described the use of orthogonal collocation

on finite elements discretization schemes to convert general DAE-constrained optimization

problem into large-scale and sparse NLPs. In the following chapter, we will present the

specifics of an interior-point solver able to exploit the sparsity of these NLPs and able to

handle highly complex DAE models.
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Chapter 3

Interior-Point NLP Solvers

In this chapter, we discuss advantages and disadvantages of interior-point solvers for the

solution of large-scale NLPs arising in the context of DAE-constrained optimization. We

then discuss the implementation of post-optimal analysis capabilities on the IPOPT solver.

In particular, we derive strategies to compute fast approximate solutions for neighboring

problems using NLP sensitivity. In the following chapters, we will see that we can use

these approximations to minimize the on-line solution time of NMPC and MHE problems.

In addition, we derive strategies to extract reduced Hessian information from the NLP

solver. These capabilities will be later used to extract covariance information from large-

scale parameter and state estimation problems.

3.1 IPOPT Algorithm

The NLP problem (2.26) can be posed in the general form,

N (η) min
x

f(x, η) (3.1a)

s.t. c(x, η) = 0 (3.1b)

x ≥ 0 (3.1c)

where x ∈ <nx is variable vector containing all the discretized states, controls and parame-

ters, and η ∈ <nη is a fixed data vector.

Interior-point solvers have become a popular choice for the solution of large-scale and

sparse NLPs. In particular, the solvers LOQO, KNITRO and IPOPT are widely used. In
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this work, we describe some of the specifics of IPOPT, an NLP solver originally developed in

our research group [121]. In interior-point approaches, the inequality constraints of problem

(3.1) are handled implicitly by adding barrier terms to the objective function,

min
x φ(x, η, µ) := f(x, η) + µ

nx∑
j=1

ln(x(j)), s.t. c(x, η) = 0 (3.2)

where x(j) denotes the jth component of vector x. Solving (3.2) for a decaying sequence of

µ→ 0 results in an efficient strategy to solve the original NLP (3.1). The barrier approach

avoids the combinatorial complexity of choosing the right active-set, which is particularly

useful for NLPs with many inequality constraints. Using an initial barrier parameter µ,

IPOPT follows a primal-dual approach1 to solve the Karush-Kuhn-Tucker (KKT) conditions

of the barrier problem (3.2),

rx := ∇xL = ∇xf(x, η) +∇xc(x, η)Tλ− ν = 0 (3.3a)

rλ := ∇λL = c(x, η) = 0 (3.3b)

rν := XV e− µe = 0 (3.3c)

where X = diag(x),V = diag(ν) and e ∈ <nx is a vector of ones. Symbols λ ∈ <nλ and

ν ∈ <nx are Lagrange multipliers for the equality constraints and bounds, respectively. Note

that this system of nonlinear equations is parameterized by µ. Solutions of this system for

decaying values of µ form the so-called central path. For a fixed value µ`, IPOPT applies

an exact Newton’s method with the iteration sequence initialized at sT
o := [xT

o λT
o νT

o ]. At

the ith iteration, the search direction ∆si = si+1 − si is computed by linearization of the

KKT conditions (3.3),
Hi AT

i −Inx

Ai 0 0

Vi 0 Xi




∆xi

∆λi

∆νi

= −

∇xf(xi, η)+AT

i λi−νi

c(xi, η)

XiVie− µ`e

 (3.4)

1The term primal-dual refers to the fact that artificial dual variables ν are introduced to reformulate the

KKT conditions of the barrier problem.
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where Ai := ∇xc(xi, η) ∈ <nλ×nx is the constraint Jacobian and Hi := ∇xxL ∈ <nx×nx is

the Hessian of the Lagrange function,

L = f(xi, η) + λT
i c(xi, η)− νi

Txi, (3.5)

and Inx denotes the identity matrix. The matrix on the left-hand side of (3.4) is known as

the primal-dual matrix and we will denote this as K̄i.

In IPOPT, we can provide exact Hessian and Jacobian information through the modeling

platform AMPL [47]. With this, it is possible to guarantee fast local convergence of New-

ton’s method, and it is possible to handle problems with many degrees of freedom without

altering these local convergence properties (as opposed to Quasi-Newton methods). After

solving a sequence of barrier problems for µ` → 0, the solver returns the optimal solution

triplet sT
∗ = [xT

∗ λT
∗ νT

∗ ] which implicitly defines the active-set (set of variables satisfying

x(j) = 0). To update the barrier parameter µ`, IPOPT can use a monotonic decrease

strategy or an adaptive decrease strategy. It is worth emphasizing that these strategies do

not necessarily follow the central path (as opposed to path-following approaches such as

Mehrotra’s predictor-corrector method). Finally, the solver incorporates a filter line-search

globalization strategy to promote convergence from poor starting points.

Remark: The primal-dual system (3.4) is a simplification of the actual system imple-

mented in the solver which incorporates general inequality constraints (see Appendix A).

This is done in order to simplify the presentation.

3.1.1 Computational Issues

The primal-dual system is symmetrized by eliminating the step for the dual variables. This

gives,  Wi + δxInx AT
i

Ai −δcInλ

 ∆xi

∆λi

= −
∇xL̄(xi, λi, η)

c(xi, η)

 , (3.6a)

∆νi = Xi
−1 (µ`e−Vi∆xi)− νi (3.6b)
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where Wi := Hi+Σi is known as the barrier Hessian,∇xL̄(xi, λi, η) := ∇xφ(xi, η, µ`)+AT
i λi,

Σi := X−1
i Vi and δx, δc ≥ 0. The matrix on the left-hand side of (3.6a) is known as the

augmented matrix. We will also refer to this matrix as the KKT2 matrix and denote this as

Ki. This is a large-scale, sparse, symmetric, and indefinite matrix. The computation of the

search step involves the factorization of this augmented matrix. This factorization is the

most computationally intensive step in the solution of the NLP. A crucial advantage that

interior-point solvers offer over active-set solvers is that the structure of the primal-dual

matrix and of the KKT matrix do not change between iterations. This facilitates the design

of tailored linear algebra strategies to exploit special structures.

In IPOPT, we use a direct factorization of the augmented matrix as a default. With

this, we only exploit its overall sparsity pattern. The computational complexity of this

strategy is in general very favorable, scaling nearly linearly, and at most quadratically, with

the overall dimensions of the NLP [131]. This is a significant advantage in the context of

DAE-constrained optimization since, as we have seen, the NLP tends to be very sparse.

However, a problem that might arise in the direct factorization approach is that significant

fill-in and computer memory bottlenecks can be introduced during the factorization step if

the sparsity pattern is not properly exploited. In order to factorize the KKT matrix, we can

use several sparse linear solvers interfaced to IPOPT such as MA27, MA57, Pardiso, among

others [110, 37]. These linear solvers perform a preliminary analysis of the matrix sparsity

pattern. During this phase, the linear solver permutes the matrix to reduce fill-in and

computer memory requirements in the factorization phase. We have recently found out that

MA57 is particularly attractive since it incorporates different ordering strategies such as an

approximate minimum degree (AMD) ordering algorithm and a nested dissection algorithm

based on the multi-level graph partitioning strategy, implemented in Metis [67, 52]. For very

large-scale problems, nested dissection techniques excel at identifying high-level (coarse-

grained) structures and thus play a crucial role in the factorization time and reliability of
2In numerical linear algebra literature, the structure of the augmented matrix is said to be of KKT type.
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the linear solver. This is a particularly attractive feature in the context of DAE-constrained

optimization since many (sometimes non-intuitive) structures arise.

3.1.2 Inertia Correction

In order to compute the search step, the augmented matrix needs to be non-singular. In

addition, the filter line-search strategy used in IPOPT requires that the Newton step is a

descent direction [121]. These requirements might not hold in the presence of directions

of negative curvature or rank-deficient Jacobians. These degeneracies tend to appear in

highly nonlinear problems and/or ill-posed formulations. This is particularly relevant in

the context of DAE-constrained optimization since all the complexity of the DAE model

is handled by the NLP solver. IPOPT follows a special inertia-correction strategy to cope

with these issues. Because of the importance of this topic, we summarize a set of results

that will become useful in the following sections.

Definition 1. (Reduced Barrier Hessian [93]) Let Z ∈ <nx×nd with nd := nx − nλ be a

matrix whose columns form a null-space of the Jacobian of the equality constrains A (i.e.

Z has full rank and AZ = 0). The reduced barrier Hessian matrix is defined as ZTWZ

with W defined in (3.6).

Lemma 3.1.1. (Non-singularity of KKT matrix [46]) Let A be full row rank and assume

that the reduced barrier Hessian ZTWZ is positive definite then, the KKT system

K =

 W AT

A

 (3.7)

is non-singular.

Note that the reduced barrier Hessian is never formed in full-space solvers like IPOPT.

Therefore, it would be impractical to check for the non-singularity of the KKT matrix in

this way. An indirect strategy can be derived from the following results.

Chapter 3. Interior-Point NLP Solvers

30



3.1 IPOPT Algorithm

Definition 2. (Inertia of a Matrix [46]) Given a symmetric matrix K, its inertia, denoted

by In(K), is the integer triple (ip, in, iz) where where ip(K), in(K), and iz(K) are the

numbers of positive, negative, and zero eigenvalues of K.

Lemma 3.1.2. (Relationship Inertia of KKT matrix and Reduced Barrier Hessian [93]) If

A has rank nλ, then In(K) = In(ZTWZ) + (nλ, nλ, 0).

If the reduced barrier Hessian is positive definite, then In(ZTWZ) = (nd, 0, 0) with

nd = nx − nλ. Using this fact, the above lemma leads to,

Theorem 3.1.3. (Inertia and non-singularity of KKT matrix [93]) Assume A has rank nλ

and that the reduced Hessian ZTWZ is positive definite then, In(K) = (nx, nλ, 0).

Since many symmetric linear solvers such as MA27 or MA57 return the inertia of the

KKT matrix as an outcome of the factorization, it is possible to use this to verify that the

Newton step is indeed a descent direction and/or if the Jacobian has full row rank [93]. If

the inertia returned by the linear solver is not exactly (nx, nλ, 0), then IPOPT refactorizes

the KKT matrix (3.6a) with different trial values of the diagonal terms δx ≥ 0 and δc ≥ 0

until the required inertia is obtained [121]. Once the problem is converged, the inertia of

the KKT matrix can give an indication of the nature of the optimal point since we now

have a way to verify the status of the reduced barrier Hessian at each iteration. To explain

this, we make use of the following fundamental results.

Definition 3. (Jacobian of Active Constraints) Let A ∈ <nλ×nx be the Jacobian of the

equality constraints. Consider a variable partition xT = [xT
A |xT

I ] where xA ∈ <nA are

the active variables at the solution (xA(j) = 0) and xI ∈ <nI are the inactive variables

(xI(j) > 0) with nx = nA +nI and associated bound multipliers νA and νI . Let E ∈ <nA×nx

be the Jacobian of the active bounds with structure E = [InA | 0]. The Jacobian of the active

constraints is then defined as ĀT = [AT |ET ] with Ā ∈ <(nλ+nA)×nx.

Definition 4. (LICQ [93]) We say that the linear independence constraint qualification

holds at a point s∗ if all the rows of Ā are linearly independent.
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Definition 5. (Strict Complementarity [93]) We say that strict complementarity holds at

s∗ if for all xA(j) then νA(j) > 0 and for all xI(j) then νI(j) = 0.

Lemma 3.1.4. (First-Order Necessary Conditions (KKT) [93]) Assume that x∗ is a local

solution of the NLP (3.1) and that, at this point, LICQ holds. Then, there exist multipliers

λ∗ and ν∗ such that,

∇xL(s∗) = 0 (3.8a)

∇λL(s∗) = 0 (3.8b)

X∗V∗ = 0 (3.8c)

x∗ ≥ 0 (3.8d)

ν∗ ≥ 0. (3.8e)

Lemma 3.1.5. (Second-Order Sufficient Conditions (SSOC) [93]) Assume that s∗ satisfies

the KKT conditions and that, at this point, strict complementary holds. Assume also that,

for a nonzero vector w ∈ <nx satisfying Āw = 0,

wTHw > 0 (3.9)

holds, then s∗ is a strict local solution of the NLP (3.1).

Note that we can always project a vector w satisfying Āw = 0 as w = Z̄u with ĀZ̄ = 0.

As a consequence, condition (3.9) is equivalent to say that the reduced Hessian Z̄THZ̄

is positive definite. Note also that the reduced Hessian is a projection of the Lagrangian

Hessian H into the null-space of all the active constraints. When no bounds are active at

the solution then Σ = 0 and A = Ā. As a consequence, the reduced barrier Hessian and

the reduced Hessian coincide. Since we can check for positive definiteness of the reduced

barrier Hessian through the regularization terms δc and δd, we can directly check if the

SSOC qualification holds. When we have active bounds, we can also guarantee that the

positive definiteness of the reduced barrier Hessian implies that the optimal point satisfies

SSOC. In order to prove this, we establish the following results.
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Lemma 3.1.6. (Debreu’s Lemma [46]) Given an nA × nx matrix E and an nx × nx sym-

metric matrix H, then wTHw > 0 for all nonzero w satisfying Ew = 0 if and only if there

is a finite ρ̄ > 0 such that H + ρETE is positive definite for all ρ ≥ ρ̄.

Theorem 3.1.7. (Reduced Barrier Hessian and SSOC) Assume that s∗ satisfies the KKT

conditions and that, at this point, strict complementary holds. Assume also that, at this

point, the reduced barrier Hessian is positive definite (i.e. wTWw > 0 for all nonzero

vectors w satisfying Aw = 0) then, SSOC holds.

Proof: Consider the variable partition xT = [xT
A |xT

I ]. Recall that W = H + Σ with

Σ = X−1V = µX−2. The barrier Hessian can be written as,

W = H +

 ρInA 0

0 O(µ)InI

 . (3.10)

As µ → 0 the block on the right corner of Σ tends to zero. On the other hand, the block

on the left corner tends to a large value as µ → 0 that we bound from above through the

constant ρ > 0. With this, we can establish,

wTWw = wTHw + ρwTETEw. (3.11)

From Debreu’s lemma we know that wTHw > 0 holds for all nonzero w satisfying Ew = 0 if

and only if W is positive definite. Furthermore, positive definiteness W implies that for all

nonzero w such that Aw = 0 then wTWw > 0. The result follows directly from Definition

3 and Lemma 3.1.5. �

The above result is of practical importance since it implies that if the KKT matrix does

not need regularization at the solution, we can guarantee that the optimal point satisfies

SSOC. This is a quick and direct check of the reliability of the solution and can be helpful

in determining if the NLP is ill-posed (e.g. convergence to saddle points).
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3.1.3 IPOPT Software Architecture

IPOPT is currently implemented in object-oriented or modular form (see Figure 3.1). The

structure is designed so that the main algorithmic components such as the globalization

strategy, the µ update strategy, the solution of the augmented linear system, etc. can be

seen as classes. Any particular implementation of a particular class is seen as an object

which inherits all the properties of the class [77].

Core IPOPT
Algorithm

Augmented
System Solver

NLP 
Sensitivity

Reduced
Hessian Info 

Monotonic

Adaptive

μ Strategy

Direct
Solver

Tailored
Solver

Class

Object

Object

Post-Optimal
Analysis

Figure 3.1: Object-Oriented Implementation of IPOPT.

An important advantage of this software architecture is that extra capabilities can be

added to the solver without altering the core structure of the algorithm. In the following

sections, we describe a set of new capabilities added to the IPOPT solver. In particular, we

are interested in reusing the factorization of the augmented matrix available at the solution

to perform a variety of Post-Optimal Analysis tasks. For instance, we can analyze the

curvature of the solution by extracting reduced Hessian information and we can perform

fast NLP sensitivity calculations to compute approximate solutions for neighboring NLP

problems.
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3.2 Post-Optimal Analysis

3.2.1 Extraction of Reduced Hessian Information

In certain applications, we would not only want to verify but also to quantify the curvature

of the solution. This can be done by computing the principal components or eigenvalues of

the reduced Hessian matrix. A problem that arises in IPOPT is that the reduced Hessian

is never formed. Here, we present a practical strategy to extract this information from the

KKT matrix through inexpensive backsolves.

To explain the mechanics of the strategy, we split the variable vector as xT = [bT dT ]

where b ∈ <nλ is a vector of dependent variables and d ∈ <nd is a vector of independent

variables of the same dimension as the number of degrees of freedom of the NLP (i.e.

nd = nx − nλ). According to this variable partition, the Jacobian can be rearranged as

A = [Ab | Ad] where Ab ∈ <nλ×nλ is a non-singular square matrix. In addition, the barrier

Hessian can be represented as,

W =

 Wbb Wbd

Wdb Wdd

 . (3.12)

Following this reasoning, we can represent the KKT system (3.6) evaluated at the solution

as, 
Wbb Wbd AT

b

Wdb Wdd AT
d

Ab Ad 0




∆b

∆d

∆λ

= −

rb

rd

rλ

 . (3.13)

Here, note that the right-hand sides are zero at the solution of the NLP and that the KKT

matrix is already factorized. A practical strategy to extract reduced Hessian information

using this factorization is summarized in the following theorem.
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Theorem 3.2.1. (Extraction of Reduced Barrier Hessian from Factorized KKT Matrix)
Assume that the KKT matrix is non-singular at the current optimal point. If we set rb =
rλ = 0 and rd = Ind

(:, j) (i.e. the jth column of the identify matrix) then, the search step
∆d becomes the jth column of the inverse of the reduced barrier Hessian matrix. In other
words,

∆d = (ZTWZ)−1(:, j) (3.14)

where Z ∈ <nx×nd is a null-space matrix of A with structure,

Z =
[
−Ab

−1Ad

Ind

]
. (3.15)

Proof: Using Z defined in (3.15) and W defined in (3.13), the structure of the reduced

barrier Hessian is,

ZTWZ = Wdd + AT
d A−T

b WbbA−1
b Ad −AT

d A−1
b Wbd −WdbA−1

b Ad. (3.16)

Note that performing backsolves with the factorized KKT matrix (3.13) and ∇bL̄ = ∇λL̄ =

0 and ∇dL̄ = Ind
(:, j) is equivalent to solve the linear system,

Wbb∆B + Wbd∆D + AT
b ∆Λ = 0 (3.17a)

Wdb∆B + Wdd∆D + AT
d ∆Λ = Ind

(3.17b)

Ab∆B + Ad∆D = 0. (3.17c)

Eliminating ∆B from (3.17c) and plugging in (3.17a) leads to,

∆Λ = A−T
b (WbbA−1

b Ad −Wbd)∆D (3.18)

substituting into (3.17b),(
Wdd + AT

d A−T
b WbbA−1

b Ad −AT
d A−T

b Wbd −WdbA−1
b Ad

)
∆D = Ind

. (3.19)

Solving for ∆D leads to ∆D = (ZTWZ)−1. �

The above strategy is only valid when there are no active bounds at the solution. With

this, the inverse of the reduced barrier Hessian matches the inverse of the reduced Hessian.
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Moreover, if inertia correction is required at the solution (δc > 0 or δd > 0), the extracted

matrix is the inverse of the regularized reduced barrier Hessian which is an artificial matrix.

Although the regularization is an indication of a rank-deficient Jacobian or the presence of

directions of negative curvature, no further information of the nature of the optimal point

can be inferred from the regularized KKT matrix.

Finally, note that IPOPT does not make an explicit distinction between the variables

x for solving the NLP. For the implementation of this strategy, we provide IPOPT with

pointers that specify which variables x should be used as d to compute the reduced Hessian

information. This can be done through modeling platforms such as AMPL.

The availability of reduced Hessian information can be valuable in the solution of large-

scale optimal control problems and parameter and state estimation problems. For instance,

the reduced Hessian matrix can be used for the analysis of singular optimal control problems

and to infer controllability properties of complex dynamic systems [66]. In Chapters 4 and

6 we will also see that reduced Hessian information can also be used to perform inference

analyzes of solutions of estimation problems.

Illustrative Example

Consider a simple NLP problem,

min (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2 (3.20a)

s.t. x1 + 2x2 + 3x3 = 0. (3.20b)

The Lagrange function associated with this problem is,

L = (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2 + λ(x1 + 2x2 + 3x3). (3.21)
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The first-order optimality conditions,

∂L
∂x1

= 2(x1 − 1) + λ = 0

∂L
∂x2

= 2(x2 − 2) + 2λ = 0

∂L
∂x3

= 2(x3 − 3) + 3λ = 0

∂L
∂λ

= x1 + 2x2 + 3x3 = 0 (3.22)

linearizing, 
2 1

2 2
2 3

1 2 3




∆x1

∆x2

∆x3

∆λ

 = −


∂L
∂x1
∂L
∂x2
∂L
∂x3
∂L
∂λ

 (3.23)

from here, we can identify the structure of the KKT system, H AT

A

 ∆x

∆λ

 = −

 ∂L
∂x

∂L
∂λ

 . (3.24)

Here, the Hessian of the Lagrangian is equal to the barrier Hessian since we have no bounds.

We define the reduced Hessian matrix as,

H̄ = ZTHZ. (3.25)

If we choose b = x1 and d = [x2, x3] we obtain,

Z =

 −(1)−1 [2 3][
1

1

]  =

 −2 −3
1

1

 (3.26)

the reduced Hessian is,

H̄ = ZTHZ =
[
−2 1
−3 1

] 2
2

2

 −2 −3
1

1

 =
[

10 12
12 20

]
(3.27)

and the inverse of the reduced Hessian,

H̄−1 =

 H̄−1
x2,x2 H̄−1

x2,x3

H̄−1
x3,x2 H̄−1

x3,x3

 =

 0.3571 −0.2143

−0.2143 0.1786

 (3.28)
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The procedure to extract reduced Hessian information from the primal-dual matrix can be

explained by looking at the primal-dual system of our example (3.23). If we recursively place

unit vectors in the right-hand side of the primal-dual system we can extract the inverse of

the reduced Hessian. For instance,


2 1

2 2
2 3

1 2 3




∆x1

∆x2

∆x3

∆λ

 =


0
1
0
0

 ⇒ ∆x2 = H̄−1
x2,x2

, ∆x3 = H̄−1
x2,x3

(3.29)

and, 
2 1

2 2
2 3

1 2 3




∆x1

∆x2

∆x3

∆λ

 =


0
0
1
0

 ⇒ ∆x2 = H̄−1
x3,x2

, ∆x3 = H̄−1
x3,x3

(3.30)

With this, we are implicitly forming the columns of the inverse of the reduced Hessian.

3.2.2 Nonlinear Programming Sensitivity

Note that problem (3.1) can be treated as a parametric programming problem in the data

η ∈ <nη . With this, the optimal values of the primal and dual variables can be treated

as implicit functions of η. For a sufficiently small µ [41, 131], the KKT conditions of the

barrier problem (3.3) can be expressed as,

ϕ(s∗(η), η) = 0. (3.31)

Here, we are interested in computing fast approximate solutions for neighboring problems

around an already available nominal solution s∗(η0). In order to do this, we make use of

the following classical results.
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Theorem 3.2.2. (NLP Sensitivity) [41, 25]. If f(·) and c(·) of the parametric problem
N (η) are twice continuously differentiable in a neighborhood of the nominal solution s∗(η0)
and this solution satisfies LICQ and SSOC, then

· s∗(η0) is an isolated local minimizer of N (η0) and the associated Lagrange multipliers
are unique.

· For η in a neighborhood of η0 there exists a unique, continuous and differentiable
vector function s∗(η) which is a local minimizer satisfying LICQ and SSOC for N (η).

· There exists a positive Lipschitz constant L such that ‖s∗(η)− s∗(η0)‖ ≤ L‖η − η0‖.

· There exists a positive Lipschitz constant Lf such that the optimal objective function
values f(s∗(η), η) and f(s∗(η0), η0) satisfy ‖f(s∗(η), η)− f(s∗(η0), η0)‖ ≤ Lf‖η− η0‖.

An immediate consequence of these results is that we can apply the implicit function

theorem to (3.31) at s∗(η0) to yield,

K̄∗(η0)
∂s∗
∂η

= −∂ϕ(s∗(η0), η0)
∂η

(3.32)

where K̄∗(η0) is the primal-dual matrix of N (η0) evaluated at s∗(η0). As sketched in Figure

3.2, first-order estimates of the solutions of neighboring problems can be obtained from the

explicit form,

s̃(η) = s∗(η0) +
∂s∗
∂η

(η − η0) (3.33)

where s̃(η) is an approximate solution of s∗(η). From continuity and differentiability of the

optimal solution vector, there exists a positive Lipschitz constant Ls such that [33],

‖s̃(η)− s∗(η)‖ ≤ Ls‖η − η0‖2. (3.34)

If the nominal solution satisfies LICQ and SSOC (e.g. no inertia correction required

by IPOPT), then the primal-dual matrix is non-singular and can be reused to compute

the sensitivity matrix from (3.32). Moreover, since the factorization of the primal-dual

matrix3 K̄∗(η0) is already available from the solution of the nominal problem N (η0), the
3If the primal-dual matrix K̄∗ is seen as a black box, this is equivalent to say that the augmented matrix

in (3.6) is already factorized.
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Figure 3.2: NLP sensitivity approximation.

computation of the sensitivity matrix from (3.32) requires nη backsolves on the system,

K̄∗(η0)
∂s∗
∂η

(:, j) = −∂ϕ(s∗(η0), η0)
∂η

(:, j). (3.35)

The step ∆s(η) = s̃(η) − s∗(η0) in (3.33) can also be found by linearization of the KKT

conditions (3.31) around s∗(η0) to give,

K̄∗(η0)∆s(η) = − (ϕ(s∗(η0), η)− ϕ(s∗(η0), η0))

= −ϕ(s∗(η0), η). (3.36)

Here, ∆s(η) = s̃(η) − s∗(η0) is a Newton step taken from s∗(η0) towards the solution of a

neighboring problem N (η) so that s̃(η) satisfies (3.33)-(3.34). Computing this step requires

a single backsolve which can be performed orders of magnitude faster than the factorization

of the KKT matrix. Consequently, this is a fast way of computing approximate solutions

to neighboring problems.

Since the approximate solution s̃(η) is accurate to first order, we can use it as the initial

guess so(η) to warm-start the neighboring NLP N (η). Furthermore, we can reuse the KKT

matrix K̄∗(η0) to perform fast fixed-point iterations on the system,

K̄∗(η0)∆si = −ϕ(si(η), η) (3.37)
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Nominal 
Central Path

Same 
Active-Set 

Active-Set Change

Figure 3.3: NLP sensitivity in the face of active-set changes.

with ∆si = si+1(η)−si(η) and so(η) = s∗(η0). With this, we can refine the warm-start point

of the perturbed problem N (η) until no further progress can be made with the fixed KKT

matrix. For sufficiently small perturbations, these fast fixed-point iterations can converge

to the solution of the perturbed problem s∗(η) [33]. However, for large perturbations, the

KKT matrix needs to be reevaluated and refactorized (i.e. the NLP may need to be solved

again).

The implementation of NLP sensitivity capabilities in IPOPT is straightforward. We

treat the nominal data vector η0 as variables that are fixed during the solution of the NLP.

Once the optimal solution is found, we substitute the perturbed values η on the right-hand

side of the primal-dual system (A.9) to obtain the approximate solution. This can be done

recursively for fixed-point iterations.

Note that continuity of the solution path s∗(η) around the nominal solution s∗(η0) implies

that the approximation (3.33) is only valid in a neighborhood where the active-set of s∗(η0)

remains unchanged [41]. In the presence of an active-set change, the linearization of the

complementarity relaxation in (3.4) (with small µ) will tend to drive the perturbed Newton

step (3.36) outside of the feasible region. This scenario is illustrated in Figure 3.3.
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These observations are of practical relevance in the context of warm-starting strategies

for interior-point solvers. Imagine that we warm-start the solution of problem N (η) with

the nominal solution s∗(η0) and we set µ to a small value. If the solution s∗(η) has the same

active-set, the first Newton iteration taken by the interior-point solver will take us close to

the optimal solution. However, when the solution s∗(η) has a different active-set, the first

Newton step will takes us outside of the feasible region. The solver will cut back the step

and will tend to stay close to the boundary making slow progress towards the solution.

Note that even if we know the right active-set of the solution, guesses of the values of

the bound multipliers will be needed as well but these are difficult to obtain. This is an

important disadvantage of interior-point solvers when compared to active-set solvers. This

is particularly relevant in applications that rely on subsequent solutions of similar NLPs

(e.g. on-line applications or mixed-integer programming algorithms). In order to account

for active-set changes, it is possible to compute Newton steps from the solution of multiple

barrier problems along the central path. This strategy has been previously proposed to

warm-start linear and quadratic programming problems [38, 50]. A problem that arises in

infeasible path solvers like IPOPT is that, in most cases, the solver does not stay close to

the central path so it is difficult to keep track of solutions of barrier problems. In addition,

storing multiple KKT matrices is impractical in large-scale applications. In Section 3.2.3

we will present a practical strategy to overcome some of these limitations.

Illustrative Example

Consider the parametric NLP problem presented by Ganesh and Biegler [49],

min x2
1 + x2

2 + x2
3

s.t.
6x1 + 3x2 + 2x3 − η1 = 0
η2x1 + x2 − x3 − 1 = 0

x1, x2, x3 ≥ 0. (3.38)
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The problem data is given by η = [η1, η2]. The Lagrange function is given by,

L = x2
1 + x2

2 + x2
3 + λ1(6x1 + 3x2 + 2x3 − η1) + λ2(η2x1 + x2 − x3 − 1)

−νx1x1 − νy1x2 − νx3x3 (3.39)

Using a primal-dual barrier approach, the KKT conditions of the barrier problem become:

2x1 + 6λ1 + η2λ2 − νx1 = 0

2x2 + 3λ1 + λ2 − νy1 = 0

2x3 + 2λ1 − λ2 − νy2 = 0

6x1 + 3x2 + 2x3 − η1 = 0

η2x1 + x2 − x3 − 1 = 0

νx1x1 − µ = 0

νx2x2 − µ = 0

νx3x3 − µ = 0

x1, x2, x3, νx1, νx2 , νx3 ≥ 0. (3.40)

Linearizing around an arbitrary point sk we obtain the primal-dual system,



2 6 η2 −1
2 3 1 −1

2 2 −1 −1
6 3 2
η2 1 −1
vk

x1
xk

1

vk
x2

xk
2

vk
x3

xk
3





∆xk
1

∆xk
2

∆xk
3

∆λk
1

∆λk
2

∆νk
x1

∆νk
x2

∆νk
x3


= −



2xk
1 + 6λk

1 + η2λ
k
2 − νk

x1

2xk
2 + 3λk

1 + λk
2 − νk

x2

2xk
3 + 2λk

1 − λk
2 − νk

x3

6xk
1 + 3xk

2 + 2xk
3 − η1

η2x
k
1 + xk

2 − xk
3 − 1

νk
x1
xk

1 − µ
νk

x2
xk

2 − µ
νk

x3
xk

3 − µ


(3.41)

From Table 3.1 we see that the solution of the NLP for the nominal value of η0 =

[η1,0 η2,0] = [4.5 1] is s∗(η0) = [0.5 0.5 0 0 − 1 0 0 1]. At this point, the primal-dual system

becomes,
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

2 6 η2,0 −1
2 3 1 −1

2 2 −1 −1
6 3 2
η2,0 1 −1
O(µ) 0.5

O(µ) 0.5
1 O(µ)





∆x1

∆x2

∆x3

∆λ1

∆λ2

∆νx1

∆νx2

∆νx3


= −



2x∗1 + 6λ∗1 + η2,0λ
∗
2 − ν∗x1

2x∗2 + 3λ∗1 + λ∗2 − ν∗x2

2x∗3 + 2λ∗1 − λ∗2 − ν∗x3

6x∗1 + 3x∗2 + 2x∗3 − η1,0

η2,0x
∗
1 + x∗2 − x∗3 − 1
ν∗x1

x∗1 − µ
ν∗x2

x∗2 − µ
ν∗x3

x∗3 − µ


(3.42)

where µ is a small value. Assume that we want to find the solution of the perturbed problem

with η = [4 1]. The exact solution of this problem is given in Table 3.1. Note that the

active-set remains unchanged for this perturbation. If we replace η0 with η in the right-hand

side of (3.42), the computed step returns s̃(η) = [0.333 0.666 0 0.2222 − 2 0 0 2.44]. This

is a perfect approximation of the solution s∗(η) = [0.333 0.666 0 0.2222 − 2 0 0 2.44]. Now

consider the perturbation with η = [5 1]. From the table we see that x3 becomes inactive

(i.e. there is a change in the active-set). The sensitivity solution is s̃(η) = [0.666 0.333 0 −

0.2222 0 0 0 −0.444] which differs from the optimal solution s∗(η) = [0.6327 0.388 0.0204 −

0.163 − 0.286 0 0 0]. In particular, note that the predicted bound multiplier νx3 is negative

(outside of the feasible region). This illustrates the limitations of NLP sensitivity in handling

active-set changes.

η1 η2 x1 x2 x3 λ1 λ2 νx1 νx2 νx3

4.0 1 0.333 0.666 0 0.222 −2 0 0 2.444

4.5 1 0.5 0.5 0 0 −1 0 0 1

5 1 0.6327 0.388 0.0204 -0.163 −0.286 0 0 0

Table 3.1: Solutions of parametric NLP example.

3.2.3 Fix-Relax Strategy

NLP sensitivity allows to analyze the effect of perturbations on the problem data around

the nominal value η0 which is known a priori. Consider now the scenario in which we
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would like to study the effect of perturbations on the values of internal variables around

a given solution. In other words, imagine that the data η0 is not known a priori but is to

be determined from the solution of the NLP. As we will see later, this capability has many

applications. For instance, it can be used to compute fast NLP sensitivity approximations

in the face of active-set changes.

We consider the variable partition xT = [gT uT ] where g ∈ <ng is a vector of fixed

variables. We study the effect of perturbations on the unfixed variables u ∈ <nu where

nu = nx − ng. For this, we define the nominal value u0 obtained from the solution of a

nominal NLP and the perturbed value up.

According to the variable partition, we can represent the primal-dual system (3.4) as,

Hgg Hgu AT
g −Ing 0

Hug Huu AT
u 0 −Inu

Ag Au 0 0 0

Vg 0 0 G 0

0 Vu 0 0 U





∆g

∆u

∆λ

∆νg

∆νu


= −



rg

ru

rλ

rνg

rνu


. (3.43)

In compact form,

K̄∗∆s = −rs (3.44)

where ∇sL = 0 at the current solution. The primal-dual matrix on the left-hand side

is already factorized at the solution. To perturb the internal variable u, we impose the

constraint,

∆u = −(u0 − up). (3.45)

By doing so, the optimality conditions of u do not hold anymore and need to be discarded.

We want to avoid dropping the second row in (3.43) since this would change the structure

of the KKT matrix and we will need to refactorize it. In order to avoid this, we eliminate
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these rows by adding slack variables ∆ν̄u. With this, system (3.43) becomes,

Hgg Hgu AT
g −Ing 0 0

Hug Huu AT
u 0 −Inu Inu

Ag Au 0 0 0 0

Vg 0 0 G 0 0

0 Vu 0 0 U 0

0 Inu 0 0 0 0





∆g

∆u

∆λ

∆νg

∆νu

∆ν̄u


= −



rg

ru

rλ

rνg

rνu

u0 − up


. (3.46)

if we define E = [0 Inu 0 0 0 0], we can represent the above linear system as, K̄∗ ET

E 0

 ∆s

∆ν̄u

 = −

 rs

u0 − up

 (3.47)

where ∆s = s̃(up) − s∗(u0). In other words, the internal variable u can be seen as the

problem data η. Furthermore, s̃(up) is an approximation of the optimal solution s∗(up). In

addition, the slack variables ∆ν̄u can be seen as the multipliers of the artificial constraint

(3.45). To compute this approximate solution efficiently, we reuse the factorization of K̄∗

following a Schur decomposition,

S∆ν̄u = EK̄−1
∗ rs − (u0 − up) (3.48a)

K̄∗∆s = −(rs + ET ∆ν̄u). (3.48b)

The Schur complement matrix S ∈ <nu×nu is given by,

S = −
(
EK̄−1

∗ ET
)
. (3.49)

The product matrix P = K̄−1
∗ ET is computed from backsolves on the system,

K̄∗P(:, j) = ET (:, j). (3.50)

Therefore, forming the Schur complement requires nu backsolves. The step (3.48a) requires

a dense factorization of S. To refine the approximate solutions, we can perform fixed point
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iterations on the system, K̄∗ ET

E 0

 ∆si

∆ν̄u,i

 = −

 rs(si(up))

u0 − up

 (3.51)

with si+1(up) = si(up) + ∆si and s0(up) = s∗(u0).

The above procedure can be used to compute approximate solutions for perturbations on

internal variables. Perturbations can also be performed on the dual variables ν (i.e. active

constraints at the solution can also be made inactive). Therefore, this fix-relax strategy

can be used as a Schur update strategy used in some active-set QP solvers [8]. Since this

strategy provides guesses for both the primal and dual variables, it can be used to warm-

start interior-point methods in the face of active-set changes.

Illustrative Example

We revisit the active-set change scenario of problem (3.38). As we have seen, the perturba-

tion η = [5 1] generates the inconsistent approximation,

s̃(η) = [0.666 0.333 0 − 0.2222 0 0 0 − 0.444].

Following an active-set strategy, we fix the negative bound multiplier to zero. This is done

by adding the constraint ∆νx3 = −(1−0) where 1 is the optimal value of νx3 at the nominal

solution (η0 = [4.5 1]). By relaxing the complementarity relaxation in (3.42) through the

slack variable ν̄x3 , we obtain,



2 6 η2,0 −1
2 3 1 −1

2 2 −1 −1
6 3 2
η2,0 1 −1
O(µ) 0.5

O(µ) 0.5
1 O(µ) 1

1





∆x1

∆x2

∆x3

∆λ1

∆λ2

∆νx1

∆νx2

∆νx3

∆ν̄x3


= −



2x∗1 + 6λ∗1 + η2,0λ
∗
2 − ν∗x1

2x∗2 + 3λ∗1 + λ∗2 − ν∗x2

2x∗3 + 2λ∗1 − λ∗2 − ν∗x3

6x∗1 + 3x∗2 + 2x∗3 − η1,0

η2,0x
∗
1 + x∗2 − x∗3 − 1
ν∗x1

x∗1 − µ
ν∗x2

x∗2 − µ
ν∗x3

x∗3 − µ
1− 0


(3.52)
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The solution of this linear system (e.g. through a Schur decomposition) leads to the

approximate solution s̃(η) = [0.6327 0.388 0.0204 − 0.163 − 0.286 0 0 0] which is a perfect

approximation of the optimal solution s∗(η) = [0.6327 0.388 0.0204 − 0.163 − 0.286 0 0 0].

As can be seen, the fix-relax strategy is equivalent to solve an active-set QP using Schur

complement techniques [9].

3.3 Concluding Remarks

In this chapter, we have contrasted advantages and disadvantages of full-space interior-

point solvers in the context of DAE-constrained optimization. In particular, we have seen

that the ability to exploit the sparsity of the discretized DAE model directly from the

Karush-Kuhn-Tucker (KKT) matrix leads to a highly favorable computational complexity.

We have presented practical strategies to verify the satisfaction of sufficient second order

conditions directly from the KKT matrix of the interior-point solver. Here, we make use

of basic inertia results and Debreu’s lemma to prove that, if the KKT matrix has the right

inertia at the solution, the solution is an optimal point satisfying sufficient second order

conditions.

We also demonstrate that it is possible to re-use the factorization of the full-space KKT

matrix available at the solution to extract reduced Hessian information through inexpensive

backsolves. In addition, we explain how to re-use the factorization to compute fast approx-

imate solutions for parametric NLPs using NLP sensitivity concepts. We demonstrate that

these inexpensive sensitivity approximations are accurate and can be used to warm-start

interior-point solvers. In the following sections, we will describe how to use these capabilities

in the context of model-based operations.
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Chapter 4

Parameter Estimation

Having established the basic components of the computational framework, we now use

these developments to solve different optimization problems arising in the development and

implementation of model-based applications. In this chapter, we discuss the solution of

large-scale parameter estimation problems.

4.1 Introduction

Mathematical modeling of industrial processes is a fundamental but difficult task that mo-

tivates a huge amount of research effort. The development of these detailed models follows

a number of steps including repetitive model discrimination and experimental design steps

under controlled laboratory and pilot plant conditions. Once the initial model structure

is developed, the model undergoes a parameter tuning stage using on-line data extracted

from the full-scale process. This stage is complicated since the data tends to be noisy

and since there exist uncertain phenomena in the process that cannot be captured by the

model. The solution of parameter estimation problems is a key repetitive task during both

the development and implementation of the model.

Well known parameter estimation theory and methods have been applied only recently to

large-scale rigorous process models [40, 116, 14]. In many cases, the model is so complex and

the amounts of data are so large that the estimation problem has to be simplified (e.g. trial

and error). Unfortunately, these nonsystematic approaches can become time-consuming and

may yield parameters with large confidence regions and lack of robustness in the predictions.
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Here, we are interested in exploiting the advantages of the proposed computational strategies

to solve estimation problems incorporating large-scale process models and multiple data sets.

4.2 Maximum-Likelihood Formulations

Assume that we have NS measurement data sets reflecting the operating conditions of

a given process under different scenarios. Each data set k contains input measurements

uM
k and measurements of the associated output responses yM

k . Using this information, we

seek to estimate the parameters pk and Π of a given DAE model. Here, pk are scenario-

dependent parameters. These can be used to account for uncertain phenomena in the

process such as catalyst deactivation, coking, fouling, etc. Parameters Π are scenario-

independent parameters. These can be used to account for fundamental parameters such

as Arrhenius terms that remain constant under different operating conditions. To estimate

these parameters, we can use the standard least-squares formulation,

min
Π, pk Φ :=

1
2

NS∑
k=1

(
yk − yM

k

)T
V−1

y

(
yk − yM

k

)
s.t.

dzd
k(t)
dt

= fd
k

(
zd
k(t), za

k(t), uM
k , pk,Π

)
0 = fa

k

(
zd
k(t), za

k(t), uM
k , pk,Π

)
yk = χk

(
zd
k(t), za

k(t), uM
k , pk,Π

)
0 ≤ hk

(
zd
k(t), za

k(t), uM
k , pk,Π

)
zk(0) = z0,k, k = 1, . . . , NS (4.1)

where fd
k (·), fa

k (·) are differential and algebraic equations, respectively, defined for each data

set k = 1, . . . , NS . Symbol zd
k(t) denotes the differential state variables with initial con-

ditions z0,k, za
k(t) are algebraic state variables and the independent variable t is either

temporal or spatial. Equations χk(·) are used to map the model variables to the measured

outputs yk. The equations hk(·) are general inequality constraints. The matrix Vy is an
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approximation of the covariance matrix of the output measurements.

In standard least-squares formulation the inputs uk are fixed to the measurements uM
k .

Since in many cases the inputs contain measurement errors, this approach is well-known

to give biased parameters [89, 69, 7]. In order to avoid this, we consider an errors-in-

variables-measured (EVM) formulation. This formulation accounts for errors in all the

measured variables (input and outputs). Because of this, the EVM approach can be seen as

a simultaneous estimation/data reconciliation strategy that can be used to find more reliable

parameters [82, 71, 2]. The general EVM formulation resembles that of the standard least-

squares (4.1) but, in this case, the inputs in every data set k become decision variables.

Upon addition of terms in the objective function that account for allowed adjustments of

the input variables, the estimation problem becomes,

min
Π, pk, uk Φ :=

1
2

NS∑
k=1

(
yk − yM

k

)T
V−1

y

(
yk − yM

k

)
+
(
uk − uM

k

)T
V−1

u

(
uk − uM

k

)
s.t.

dzd
k(t)
dt

= fd
k

(
zd
k(t), za

k(t), uk, pk,Π
)

0 = fa
k

(
zd
k(t), za

k(t), uk, pk,Π
)

yk = χk

(
zd
k(t), za

k(t), uk, pk,Π
)

0 ≤ hk

(
zd
k(t), za

k(t), uk, pk,Π
)

zk(0) = z0,k, k = 1, . . . , NS . (4.2)

Where Vu is an approximation of the covariance matrix of the input measurements. The

EVM approach corrects for measurement errors in all these variables and obtains less biased

parameters. However, this comes at the expense of a significant increase in the number of

degrees of freedom. Consequently, solutions of EVM problems are often considered to be

computationally intensive.

Estimation problems are in general highly complex optimization problems. The first

issue arises from the fact that the number of constraints increases with the number of

data sets. Since in this context the constraints include a large and highly nonlinear DAE
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model, the problem becomes computationally expensive as we add information into the

problem. Another issue is that it is often difficult to determine the number of parameters

that can be estimated reliably from the available measurement information. If the data are

not informative enough, the problem can become ill-posed (e.g. different combinations of

parameters give the same objective function value) and can become difficult to converge.

Finally, EVM problems are especially difficult to solve because they involve a large number

of degrees of freedom. For instance, the number of iterations required by a Quasi-Newton

algorithm is directly related to the number of degrees of freedom [93].

4.3 Solution with IPOPT

We propose to use a full-discretization approach coupled to a full-space interior point solver

to solve the estimation problems (4.1)-(4.2). As we have seen in Chapter 3, this approach

presents a very favorable computational complexity. In addition, since it is possible to

use cheap exact first and second order derivative information for IPOPT, the convergence

properties of the algorithm are not affected by the number of degrees of freedom. Moreover,

the solver is quite effective in handling negative curvature issues arising from ill-posedness

and nonlinearity of the NLP.

On the other hand, we have also seen that when the KKT matrix (3.6) becomes very large

(e.g. as we increase the number of data sets), its factorization can take an excessive amount

of time or it may not even be possible due to computer memory bottlenecks. Another

practical issue arising in this approach is that the estimation problems are solved as general

NLPs. Consequently, we lose insight on the specifics of the application and it is thus difficult

to interpret the nature of the solution. This is a particularly relevant issue in parameter

estimation since it is often necessary to quantify the reliability of the parameter estimates

(inference analysis).

In the following section, we discuss how to use the generalized multi-scenario decompo-
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sition strategy proposed by Laird and Biegler [78, 132] to avoid memory bottlenecks in

parameter estimation problems. We then discuss how to use reduced Hessian information

extracted from IPOPT to perform inference analysis studies.

4.3.1 Exploitation of Multi-Set Structure

Note that the variables in (4.1)-(4.2) are entirely independent between scenarios or data

sets and the only complicating variables are the parameters Π. If we define linking variables

and equations to deal with Π, we can write problem (3.1) as a generalized multi-scenario

problem of the form,

min
xk,Π

NS∑
k=1

fk(xk)

s.t . ck(xk) = 0,
Skxk ≥ 0,

Dkxk − D̄k Π = 0

 k = 1, . . . NS (4.3)

where xk contains all the parameters and variables corresponding to the discretization of

the DAEs for a particular scenario k, Π is the linking variables vector, matrix Dk extracts

the components corresponding to the parameters Π from the xk vector and matrix D̄k

assigns the extracted components (Dk xk) to the linking variables vector Π. Matrix Sk

extracts the components of xk that are actually bounded such that, if all of the scenarios

have the same structure, we can set S1= · · ·=SNS
. Otherwise, it is possible to incorporate

scenarios with heterogeneous structures (e.g. different DAE models). Finally, note that the

above formulation is considered for implementation purposes only since it allows to specify

the multi-scenario problem through individual NLP instances.

Using a barrier formulation, this problem can be converted to:

min
xk,Π

NS∑
k=1

{fk(xk)− µ
∑

j

ln[(Skxk)(j)]}

s.t . ck(xk) = 0,

Dkxk − D̄kΠ = 0

 k = 1, . . . , NS (4.4)
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where indices j correspond to scalar elements of the vector (Skxk). Defining the Lagrange

function of the barrier problem (4.4),

L(x, λ, σ,Π) =
NS∑
k=1

L̄k(xk, λk, σk,Π)

=
NS∑
k=1

{Lk(xk, λk, σk,Π)− µ
∑

j

ln[(Skxk)(j)]} (4.5)

=
NS∑
k=1

{fk(xk)−µ
∑

j

ln[(Skxk)(j)] + ck(xk)Tλk +
[
Dkxk−D̄kΠ

]T
σk}(4.6)

with multipliers λk and σk. Defining Gk=diag(Skxk) leads to the primal-dual form of the

first-order optimality conditions, written as:

∇xk
fk(xk) +∇xk

ck(xk)λk +DT
k σk − ST

k νk = 0

ck(xk) = 0

Dkxk − D̄kΠ = 0

Gkνk − µe = 0


k = 1, . . . , NS (4.7)

−
NS∑
k=1

D̄T
k σk = 0

where we define eT = [1, 1, . . . , 1]. Writing the Newton step for (4.7) at iteration ` leads to:

∇xkxk
L`

k∆xk +∇xk
c`k∆λk +DT

k ∆σk − ST
k ∆νk = −(∇xk

L`
k − ST

k ν
`
k)

∇xk
c`k∆xk = −c`k

Dk∆xk − D̄k∆Π = −Dkx
`
k + D̄kΠ`

V `
kSk∆xk +Gk∆νk = µe−Gkν

`
k


k = 1, . . . , NS

(4.8)

−
NS∑
k=1

D̄T
k ∆σk =

NS∑
k=1

D̄T
k σ

`
k

where the superscript ` indicates that the quantity is evaluated at the point (x`
k, λ

`
k, σ

`
k, ν

`
k,Π

`).
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Eliminating ∆νk from the resulting linear equation gives the primal-dual augmented system

H`
k∆xk +∇xk

c`k∆λk +DT
k ∆σk =−∇xk

L̄`
k

∇xk
c`k∆xk = −c`k

Dk∆xk − D̄k∆Π = −Dkx
`
k + D̄kΠ`

 k = 1, . . . , NS (4.9)

−
NS∑
k=1

D̄T
k ∆σk =

NS∑
k=1

D̄T
k σ

`
k

where H`
k = ∇xkxk

L`
k+S

T
k (G`

k)
−1V `

kSk, and Vk = diag(νk).

According to the IPOPT algorithm [121], the linear system (4.9) is modified as necessary

by adding diagonal terms. Diagonal elements are added to the block Hessian terms in

the augmented system to handle nonpositive curvature (δx I) and to the lower right corner

in each block to handle temporary dependencies in the constraints (δc I). Applying these

modifications, linear system (4.9) can be written with a block bordered diagonal (arrowhead)

structure given by:

W1 A1

W2 A2

W3 A3

. . .
...

WNS
ANS

AT
1 AT

2 AT
3 · · · AT

NS
δxI


·



∆v1

∆v2

∆v3
...

∆vNS

∆Π


=



r1

r2

r3
...

rNS

rΠ


(4.10)

where rT
k = −[(∇xk

L`
k)

T , (c`k)
T , (Dkx

`
k − D̄kΠ`)T ], ∆vT

k = [∆xT
k ∆λT

k ∆σT
k ], AT

k = [ 0 0 −

D̄T
k ],

Wk =


H`

k+δxI ∇xk
c`k DT

k

(∇xk
c`k)

T −δcI 0

Dk 0 −δcI


for k = 1, . . . , NS , and rΠ =

∑NS
k=1 D̄

T
k σ

`
k. The IPOPT algorithm requires the solution of the

augmented system (4.10), at each iteration along with the determination of its inertia. This

linear system can be solved, in principle, with any general direct linear solver configured
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with IPOPT. However, as the problem size grows, the time and memory requirements can

make this approach intractable. To avoid this, we apply a Schur complement decomposition.

Eliminating each Wk from (4.10) we get the following expression for ∆Π,[
δxI−

NS∑
k=1

AT
k (Wk)−1Ak

]
∆Π = rΠ −

NS∑
k=1

AT
k (Wk)−1rk (4.11)

which requires forming the Schur complement, B = δxI−
∑NS

k=1A
T
k (Wk)−1Ak, and solving

this dense symmetric linear system for ∆Π. Once a value for ∆Π is known, the remaining

variables can be found by solving the following systems,

Wk∆vk = rk −Ak∆Π (4.12)

for each k = 1, . . . NS . Note that in this strategy, the factorization of Wk and the solution

of (4.12) can be performed independently in different processors. The Schur complement

decomposition strategy applies specifically to the solution of the augmented system within

the overall IPOPT algorithm and simply replaces the general default linear solver. The

sequence of steps in the overall IPOPT algorithm are not altered, and as such, this special-

ized strategy inherits all of the convergence properties of the IPOPT algorithm for general

nonlinear programs.

The decomposition strategy is straightforward to parallelize with excellent scaling prop-

erties. With M=dim(Π), the number of parameters, the number of linear solves of the Wk

blocks required by the decomposition approach is N ·M + 2NS . If the number of available

processors in a distributed cluster is equal to NS (one processor for each scenario), then the

number of linear solves required by each processor is only M+2, independent of the number

of scenarios. This implies an approach that scales well with the number of scenarios. As we

increase the number of scenarios under consideration, the cost of the linear solve remains

fairly constant (with minimal communication overhead) as long as an additional processor

is available for each new scenario. More importantly, the memory required on each pro-

cessor is also nearly constant, allowing us to expand the number of scenarios and, using a
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large distributed cluster, move beyond the memory limitation of a standard single processor

machine. In Chapter 8 we demonstrate the computational efficiency of this approach for a

large-scale estimation problem arising in a low-density polyethylene tubular reactor process.

4.3.2 Interpretation of Estimates

It is usually not enough to obtain an optimal value of the parameters. We must also

investigate their reliability and precision. For instance, it is desired to answer questions

such as ”How much can we change the parameters and still match the data?”, ”What is

the effect of data errors on the parameters?”. This can be done by analyzing variations

of the estimated parameters in the presence of variations of the measurement data. A

parameter is usually said to be ill-conditioned if its estimated value is affected strongly by

small variations on the data [7]. Here, it is said that the parameter estimates have a large

variance which is reflected in the so-called covariance matrix.

Note that the optimal value of the parameters is an implicit function of the problem

data (measurements). Following the notation used in the NLP sensitivity section 3.2.2 and

the inference analysis of Bard [7], we can represent the KKT conditions of the standard

least-squares parameter estimation problem (4.1) as,

ϕ(Π(η), η) = 0. (4.13)

For simplicity in the presentation and without loss of generality, we have assumed that the

parameters Π are the only degrees of freedom of the problem. In the spirit of the results of

section (3.2.2), we apply the implicit function theorem around an optimal nominal solution

Π∗(η0),

K̄∗(η0)
∂Π∗
∂η

= −∂ϕ(Π∗(η0), η0)
∂η

(4.14)

so that,
∂Π∗
∂η

= −K̄∗(η0)
−1
(
∂ϕ(Π∗(η0), η0)

∂η

)
. (4.15)
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If Π are the only degrees of freedom and no bounds are active at the solution, K̄∗(η0)

represents the reduced Hessian matrix. The covariance matrix of the parameters is defined

as,

VΠ := E(δΠ∗δΠT
∗ ). (4.16)

where E(·) is the expectation operator and δΠ∗ is the deviation of the optimal parameters

for a given perturbation on the data from the current nominal solution. Computing the

exact covariance matrix would require to solve a large number of parameter estimation

problems for random variations of the data. To avoid this, we can also use the sensitivity

matrix to compute approximate estimates of variations δΠ∗ with respect to δη,

δΠ∗ ≈
∂Π∗
∂η

δη (4.17)

and,

VΠ ≈ E
(
∂Π∗
∂η

δηδηT ∂Π∗
∂η

T)
. (4.18)

Since the sensitivity matrix is a constant evaluated at the current solution, it can be taken

out of the expectation operator. This gives,

VΠ ≈
∂Π∗
∂η

Vη
∂Π∗
∂η

T

(4.19)

where Vη = E(δηδηT ) is the covariance of the measurements (e.g. Vy in (4.1)). If the

variance of the measurements is small and known it is possible to prove that,

VΠ ≈ K̄∗(η0)
−1
. (4.20)

In other words, the covariance of the parameters can be approximated by the inverse of

the reduced Hessian matrix evaluated at the current solution. This result is of practical

interest because we can extract this information directly from IPOPT. This analysis implies

that, if the reduced Hessian has large eigenvalues, then the optimum is a sharp minimum

as shown in Figure 4.1. Equivalently, the eigenvalues of the covariance matrix are small

and the parameters are reliable. Furthermore, the inverse of the reduced Hessian becomes

a better approximation of the true covariance matrix. As the optimum becomes more and
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Reliable
Parameters

Unreliable
Parameters

Reliable
Parameters

Unreliable
Parameters

Figure 4.1: Schematic representation of the relationship between the reduced Hessian and

the reliability of the estimated parameters.

more flat the reduced Hessian becomes nearly singular and the covariance matrix becomes

infinite (poor reliability of the parameters). In addition, the inverse of the reduced Hessian

becomes a poor approximation of the true parameter covariance matrix. This analysis also

implies that, as we add more and more data sets into the estimation problem, then we can

capture the variations of the measurements errors more accurately and thus decrease the

covariance of the parameter estimates.

Note that when the solution of the estimation problem is a well-defined optimum it will

satisfy the strong-second-order conditions (SSOC). SSOC in turn implies that the degrees

of freedom of the NLP can be computed uniquely. As we discussed in Chapter 3, when

the solution of the NLP satisfies SSOC, the KKT matrix will not need regularization. In

the context of parameter estimation we can then guarantee that: If no regularization of

the KKT matrix is required at the solution, the estimated parameters have been uniquely

determined (are observable) [11, 125]. If the parameters cannot be uniquely determined,

then the estimation problem is said to be ill-posed. From a practical point of view, this

implies that the measurements are not informative enough.

Having the covariance matrix of the parameters, we can quantify their reliability through

a confidence region analysis. Consider a quadratic approximation (Taylor series expansion)
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of the objective function of (4.1) around the nominal solution,

1
2
(Π−Π∗)TV−1

Π (Π−Π∗) ≈ Φ(Π)− Φ(Π∗) ≤ ε. (4.21)

Contours of constant objective function values (i.e. constant ε) are ellipsoids defined by the

parameters covariance. It can be shown that, if we have a large number data sets and if

the measurement errors are independent and normally distributed with known covariance

Vy = diag(σ2), then ε follows a chi-square distribution χ2(nΠ, α) with nΠ degrees of freedom

and confidence level α. This gives,

1
2
(Π−Π∗)TV−1

Π (Π−Π∗) ≤ σ2χ2(nΠ, α). (4.22)

One can use this relationship to obtain order-of-magnitude estimates of the parameter confi-

dence levels under different scenarios of practical interest. Note, however, that this inference

analysis strategy only applies to standard least-squares formulations. For a description of

more general inference techniques including EVM formulations please refer to [7, 2].

Illustrative Example

We consider a simple estimation problem of the form,

min
Π1,Π2,Π3

NS∑
k=1

1
2σ2

(yk − yM
k )2 (4.23a)

s.t. yk = Π1uk + Π2uk
2 + Π3uk

3, k = 1, .., NS (4.23b)

Using a set of fixed uk, we use the polynomial model with the true parameter values Π =

[1 2 3]T to generate the outputs yk
M which are also corrupted by zero-mean Gaussian noise

with variance σ2 = 0.001. For a 95% confidence level and nΠ = 3 degrees of freedom we have

σ2χ2(nΠ, α) = 0.001× 7.81. We solve the estimation problem for different number of data

sets using AMPL and IPOPT. We extract the inverse of the reduced Hessian (covariance

matrix of parameters) using the previously proposed strategy.

Since the model is a third order polynomial, a problem with NS < 3 is ill-posed and

gives a singular reduced Hessian at the solution (regularization required by IPOPT). For
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NS > 3, we plot the ellipsoidal confidence region for the pair Π2,Π3 in Figure 4.2. The

outer ellipsoid correspond to NS = 3 while the inner ellipsoid corresponds to NS = 10. As

expected, the confidence regions shrink as we add information into the problem. Note also

that the confidence regions are not concentric due to the model nonlinearity.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−10

−5

0

5

10

Π2−Π
*
2

Π
3 −

Π
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Figure 4.2: Ellipsoidal confidence regions for polynomial parameter estimation example.

4.4 Concluding Remarks

In this chapter, we have presented computational strategies for the solution of large-scale

parameter estimation problems arising in off-line model development tasks. We discuss

how to formulate multi-set parameter estimation problems as multi-scenario NLPs. We see

that this can be used to exploit the inherent structure of the problem in parallel computer

architectures to obtain fast solutions and to avoid computer memory bottlenecks.

We discuss how to verify for the uniqueness of the parameter estimates from the inertia
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of the KKT matrix. Finally, we demonstrate that it is possible to use reduced Hessian

information extracted from IPOPT to perform large-scale inference analysis in complex

estimation problems.

In the next chapter, we move from off-line model development tasks to on-line opti-

mization tasks arising in operations. In particular, we discuss computational strategies for

Nonlinear Model predictive Control (NMPC).
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Chapter 5

Nonlinear Model Predictive

Control

In this chapter, we analyze computational issues associated with Nonlinear Model Predic-

tive Control (NMPC) and propose strategies to overcome them. In particular, we derive

an advanced-step strategy that computes fast on-line approximate solutions using NLP

sensitivity concepts. We demonstrate that these approximations are accurate and do not

deteriorate significantly the stability properties of the NMPC controller.

5.1 Introduction

NMPC is a model-based feedback control strategy based on the on-line solution of moving

horizon optimal control problems (OCPs). This approach has the key advantage that it

is a general multivariable control strategy that can handle constrained, nonlinear systems

directly. NMPC has evolved over the past decade into an efficient method for the control

of large industrial systems. In a recent IFAC workshop, several industrial applications

were presented including contributions from ExxonMobil [10], BASF [91] and ABB [48]

demonstrating the effectiveness of this method.

In addition to enabling advances in DAE-constrained optimization, the evolution of

NMPC has been due to a much better understanding of its stability and robustness prop-

erties [86]. Moreover, with the ability to solve DAE-constrained optimization problems
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on-line, the separation between model predictive control and real-time optimization will

start to disappear (as in D-RTO). On the other hand, the solution of the NMPC problem is

a time-critical step that puts demands on more powerful algorithms and their implementa-

tions. The need to consider larger applications leads to the challenging task of maintaining

controller stability and performance in the face of on-line computational delays.

Performance deterioration of NMPC due to computational delays has been noted by

Santos et al. in a laboratory reactor [108] as well as in numerous industrial studies. Dete-

rioration of stability has been studied in [42, 28]. To address this issue, real-time NMPC

strategies such as explicit schemes, neighboring extremals, Newton-type controllers and

NLP sensitivity-based controllers represent some alternatives. Explicit schemes compute

off-line control actions based on a full enumeration of possible states. This approach is

most suitable for systems with a few states where the effect of combinatorics is rather small

[12, 53]. For systems with large state spaces, on-line NMPC controllers represent a more

efficient alternative. Among these, Newton-type controllers perform a single iteration (full

Newton step) in the solution of the OCP at each time step. This requires the solution of

a quadratic programming (QP) problem constructed around the solution of the QP at the

previous time step [81, 96, 35, 32]. This allows a fast disturbance rejection mechanism that

has shown good practical performance in some applications. In addition, it can be shown

that if the series of QPs is initialized around a sufficiently good reference solution, then the

QP series can converge to the solution of the moving horizon OCPs. This result follows

from the local convergence properties of Newton’s method and the parametric properties of

the moving horizon OCPs. With this, nominal stability of Newton-type controllers can be

guaranteed in the face of this approximation by making use of the inherent robustness prop-

erties of NMPC [36]. Newton-step strategies based on both single and multiple-shooting

approaches have been previously proposed.

The local convergence properties of Newton-type strategies might deteriorate in the face

of nonlinear effects and strong perturbations, thus requiring extra safeguards to promote
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global convergence [81, 33]. A strategy able to ameliorate this drawback relies on the

construction of approximate solutions around a continuously updated reference solution.

Different variants of this are based on neighboring extremals [21, 98, 95] and NLP sensitivity

concepts [26, 25, 64, 131]. The nominal stability results of Newton-type controllers can also

be used for these controller variants. However, a more general and constructive analysis of

their stability properties can become cumbersome under these arguments, thus leading to

unnecessarily conservative assumptions.

Motivated by these observations, we propose an advanced-step NMPC (asNMPC) con-

troller formulation [126]. The idea is to use the current control action to predict the future

plant state in order to solve the future OCP in advance, while the current sampling period

evolves. In the nominal case, the prediction matches the future plant state so that the cur-

rent solution is already available, thus avoiding the computational delay. Similar ideas have

been previously proposed in [42, 28]. In this case, the asNMPC controller inherits the same

nominal stability properties of the ideal NMPC (iNMPC) controller. An issue associated

with this strategy is treatment of disturbances and model mismatch. To account for these,

the proposed controller exploits the parametric property of the OCP and approximates the

true optimal solution using NLP sensitivity calculations. A direct consequence of this is

that a rigorous bound on the loss of optimality can be established and related to the bounds

of the uncertainty description. With this, it is possible to analyze the inherent robustness

properties of the asNMPC controller in a straightforward manner using input-to-state sta-

bility concepts. We show that the resulting closed-loop system is input-to-state stable and

contrast its stability bounds with those of the iNMPC controller. Here, we demonstrate

that NLP sensitivity errors do not deteriorate significantly the stability properties of the

asNMPC controller. While the proposed controller is applicable to any solution approach

to DAE-constrained optimization problems, the advanced-step strategy is most suitable for

the full discretization approach since this can provide fast background solutions. We il-

lustrate the concepts using a classical nonlinear CSTR example and discuss computational
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issues associated with larger scale systems.

Figure 5.1: Typical NMPC scenario.

5.2 Standard NMPC Formulation

Consider the scenario sketched in Figure (5.1). We assume that the dynamics of an uncertain

plant can be described by the following discrete-time dynamic model,

x(k + 1) = f̂(x(k), u(k), w(k))

= f(x(k), u(k)) + g(x(k), u(k), w(k)) (5.1)

where x(k) ∈ <nx , u(k) ∈ <nu and w(k) ∈ <nw are the plant states, controls and dis-

turbance signals, respectively, defined at time steps tk with integers k > 0. The mapping

f : <nx+nu 7→ <nx with f(0, 0) = 0 represents the nominal model,

x(k + 1) = f(x(k), u(k)) (5.2)

while the term g : <nx+nu+nw 7→ <nx can be used to describe modeling errors, estimation

errors and disturbances, among others. Having x(k), the current plant state or an estimate,

NMPC uses the nominal model,

zl+1 = f(zl, vl), z0 = x(k), l = 0, . . . , N (5.3)
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to find a control sequence {v0, v1, ..., vN} and associated state sequence {z0, z1, ..., zN} that

minimizes the cost function defined as,

JN := F (zN ) +
N−1∑
l=0

ψ(zl, vl) (5.4)

over a future prediction horizon containing N time steps. Here, the computed controls

vl ∈ <nu and predicted states zl ∈ <nx are enforced to satisfy the constraints vl ∈ U and

zl ∈ X and the terminal constraints zN ∈ Xf ⊆ X, ∀ l. The cost function JN : <nx+nu 7→ <

comprises the stage costs ψ : <nx+nu 7→ < and a terminal penalty function F : <nx 7→ <.

This gives rise to a parametric NLP problem PN (x(k)) of the form,

min
vl,zl

JN (ηmpc) := F (zN ) +
N−1∑
l=0

ψ(zl, vl)

s. t. zl+1 = f(zl, vl), z0 = x(k) l = 0, . . . N − 1

zl ∈ X, zN ∈ Xf , vl ∈ U. (5.5)

The solution of PN (x(k)), (z∗l , v
∗
l ), provides an optimal cost value JN (x(k)) as well as the

control u(k) = v∗0 which is injected into the plant. In the nominal case, this drives the state

of the plant towards x(k+1) = z(k+1) = f(x(k), u(k)) where z(k+1) ∈ <nx is the nominal

model prediction. In the face of uncertainty, the plant evolves as in (5.1) and generates the

mismatch x(k+ 1)− z(k+ 1) = g(x(k), u(k), w(k)). Once x(k+ 1) is known, the prediction

horizon is shifted forward by one sampling instant and problem PN (x(k + 1)) is solved to

find u(k + 1). This recursive strategy gives rise to the feedback law,

u(k) = hid(x(k)) (5.6)

with hid : <nx 7→ <nu . Here, we will assume that the control action resulting from this

conventional NMPC formulation can be computed instantaneously and term this the ideal

NMPC (iNMPC) controller.

Many different choices of the penalty function F (·) and of the terminal set Xf have been

proposed to guarantee stability of the nominal closed-loop system (5.6). Infinite horizon,
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quasi-infinite horizon, zero-state terminal constraint and dual-mode control represent some

alternatives [88]. In addition, since the recursive solution of the nominal problem PN (x(k))

provides a mechanism to react to disturbances in (5.1), the nominal feedback law (5.6)

provides some inherent robustness. This holds true in many important cases, except in the

presence of state constraints for X,Xf where a robust formulation of PN (x(k)) is required

(e.g. minmax NMPC). Here, we focus on nominal NMPC schemes and study their inherent

robustness properties through input-to-state stability concepts. For a comprehensive sum-

mary of robustness analysis and general robust design of discrete-time NMPC algorithms

please refer to [86].

Remark: The discrete-time representation of the dynamic model (5.2) and of the NMPC

problem (5.5) are only conceptual. In most practical applications the dynamic process model

is solved as a general continuous-time DAE system. In particular, note that the structure

of the NMPC problem resembles that of the multi-stage problem (2.3). As we have seen

in Chapter 2, the multi-stage representation can be derived from the DAEs by applying

a numerical quadrature scheme on the domain [tk, tk+1] corresponding to two neighboring

sampling times. Alternatively, we can integrate the dynamic model on this domain using a

DAE solver.

5.2.1 Optimality Conditions

The moving horizon OCP PN (·) is parametric in the initial state. Accordingly, it is possible

to define the data vector ηmpc := x(k). The following results are based on the post-optimal

analysis of solutions of parametric NMPC problems. Consequently, we will simplify the

presentation by handling the inequality constraints on the domains X, Xf , U implicitly

(e.g. by adding a logarithmic barrier function as in Chapter 3).
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The Lagrange function associated with PN (ηmpc) is given by,

L = F (zN (ηmpc)) + λT
0 (ηmpc)(z0(ηmpc)− ηmpc)

+
N−1∑
l=0

[
ψ(zl(ηmpc), vl(ηmpc)) + λT

l+1(η
mpc)(zl+1(ηmpc)− f(zl(ηmpc), vl(ηmpc)))

]
(5.7)

where λl(ηmpc) ∈ <nx are vectors of Lagrange multipliers. Note that all the primal and dual

variables become implicit functions of ηmpc. For simplicity in the presentation, we suppress

this argument from the notation. The solution of PN (ηmpc) needs to satisfy the first-order

optimality or Karush-Kuhn-Tucker (KKT) conditions,

∇λ0L = z0 − ηmpc

∇zl
L = ∇zl

ψl −Alλl+1 + λl = 0

∇vl
L = ∇vl

ψl −Blλl+1 = 0

∇λl+1
L = zl+1 − fl = 0

 l = 0, . . . , N − 1

∇zNL = ∇zNFN + λN = 0 (5.8)

where fl := f(zl, vl), ψl := ψ(zl, vl), FN := F (zN ), Al = ∇zl
fl and Bl = ∇vl

fl.

Using the NLP sensitivity results of Chapter 3, we want to study the effect of pertur-

bations on ηmpc around an available nominal solution s∗(η
mpc
0 , N). In order to do this, we

linearize the KKT conditions (5.8) around the nominal solution to give,

∆z0 = (ηmpc − ηmpc
0 )

Ql∆zl +Wl∆vl −AT
l ∆λl+1 + ∆λl = 0

W T
l ∆zl +Rl∆vl −BT

l ∆λl+1 = 0

∆zl+1 −Al∆zl −Bl∆vl = 0

 l = 0, . . . , N − 1

QN∆zN + ∆λN = 0 (5.9)

where QN = ∇zNzNL = ∇zNzNF , Ql = ∇zlzl
L, Wl = ∇zlvl

L and Rl = ∇vlvl
L. In matrix

form,
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

Inz

Inz
Q0 W0 −AT

0

WT
0 R0 −BT

0

−A0−B0 Inz

Inz
Q1 W1 −AT

1

WT
1 R1 −BT

1

−A1−B1
. . . . . .
. . . Inz

Inz QN−1 WN−1 −AT
N−1

WT
N−1 RN−1 −BT

N−1

−AN−1−BN−1 Inz

Inz QN





∆λ0

∆z0
∆u0

∆λ1

∆z1
∆u1

...
∆λN−1

∆zN−1

∆uN−1

∆λN

∆zN



= −



0
ηmpc − ηmpc

0

0
0
0
0
...
0
0
0
0
0


(5.10)

Here, notice the appearance of the perturbation ηmpc − ηmpc
0 on the linearization of the

initial conditions. If we make an explicit distinction between the primal and dual variables,

the matrix on the left-hand side becomes the augmented or KKT matrix (3.6a) solved in

IPOPT. In this context, we will denote this matrix as K∗(ηmpc
0 , N). As we have seen, the

linear system (5.10) can be solved efficiently using a direct sparse factorization and the

factors of the KKT matrix are already available at the nominal solution. Nevertheless, in

order to obtain more insight on the structure of the KKT system, we apply the Riccati

decomposition described in Appendix B [103, 34]. This gives rise to the recursion,

∆z0 = (ηmpc − ηmpc
0 )

∆λ0 = −Π0∆z0
∆vl = Kl∆zl

∆zl+1 = Al∆zl +Bl∆vl

∆λl+1 = −Πl+1∆zl+1, l = 0, ..., N (5.11)

with,

ΠN = QN

Πl−1 = Ql−1 +AT
l−1ΠlAl−1

−(AT
l−1ΠlBl−1 +Wl−1)(Rl−1 +BT

l−1ΠlBl−1)−1(BT
l−1ΠlAl−1 +W T

l−1)

Kl−1 = −(Rl−1 +BT
l−1ΠlBl−1)−1(BT

l−1ΠlAl−1 +W T
l−1)

l = N, ..., 0. (5.12)
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The computational complexity of this Riccati-like strategy scales as O(N(nz +nu)3) [103].

In other words, it is efficient for systems with few states and controls and long estimation

horizons. Nevertheless, from this recursion it becomes clear that if we have an optimal

control v∗0(η
mpc
0 ) from P(ηmpc

0 ), a fast approximate control action for a neighboring problem

P(ηmpc) can be obtained from the correction,

ṽ0(ηmpc) = v∗0(η
mpc
0 ) +K0 · (ηmpc − ηmpc

0 ) (5.13)

where K0 is an analog of the Riccati gain matrix [21]. Note that the above correction step

is equivalent to obtain ṽ0(ηmpc) from (3.36) or (3.33) with ∂v∗0
∂ηmpc = K0.

5.2.2 Stability Properties

Ensuring stability of the closed-loop system (5.1)-(5.6) is a central problem in NMPC. Here,

we establish well-known results on nominal and robust stability for the iNMPC controller.

To start the discussion, we refer to [86, 68] to make use of the following definitions and

assumptions:

Definition 6. A continuous function α(·) : < → < is a K function if α(0) = 0, α(s) >

0,∀s > 0 and it is strictly increasing. A continuous function β : < × Z → < is a KL

function if β(s, k) is a K function in s for any k > 0 and for each s > 0, β(s, ·) is decreasing

and β(s, k)→ 0 as k →∞.

Definition 7. (Lyapunov function) A function V (·) is called an Lyapunov function for

system (5.2) if there exist an invariant set X, K functions α1, α2 and α3 such that, ∀x ∈ X,

V (x) ≥ α1(|x|) (5.14a)

V (x) ≤ α2(|x|) (5.14b)

∆V (x) = V (f(x, hid(x)))− V (x) ≤ −α3(|x|) (5.14c)
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Assumption 1. (Nominal Stability Assumptions of iNMPC)

· The terminal penalty F (·), satisfies F (z) > 0,∀z ∈ Xf\{0},

· There exists a local control law u = hf (z) defined on Xf , such that f(z, hf (z)) ∈

Xf ,∀z ∈ Xf , and F (f(z, hf (z)))− F (z) ≤ −ψ(z, hf (z)),∀z ∈ Xf .

· The optimal stage cost ψ(x, u) satisfies αp(|x|) ≤ ψ(x, u) ≤ αq(|x|) where αp(·) and

αq(·) are K functions.

Assumption 2. (Computational Delay of iNMPC) The control law u = hid(x) can be

computed instantaneously.

Nominal stability of iNMPC can be paraphrased by the following theorem.

Theorem 5.2.1. (Nominal Stability of iNMPC [88, 31]) Consider the moving horizon prob-

lem PN (x) defined in (5.5) and associated control law u = hid(x), that satisfies Assumptions

1 and 2. Then, JN (x) is a Lyapunov function and the closed-loop system is asymptotically

stable.

Proof: We compare the costs of the neighboring problems PN (x(k)) and PN (x(k+ 1)). In

the absence of uncertainty x(k + 1) = z(k + 1) = f(x(k), hid(x(k)) so that,

JN (x(k + 1))− JN (x(k)) = JN (z(k + 1))− JN (x(k))

≤ F (f(z∗N , hf (z∗N )))− F (z∗N ) + ψ(z∗N , hf (z∗N ))

−ψ(x(k), u(k))

≤ −ψ(x(k), u(k))

The last two inequalities result from the fact that if a terminal controller satisfying Assump-

tions 1 exits, then the solution of PN (x(k)) provides a feasible solution to PN (z(k + 1))

and the stage cost ψ(x(k), u(k)) is the only accumulation point. Since the stage cost is

bounded by strictly positive functions, the cost function of the NMPC controller forms a
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decaying sequence and becomes a Lyapunov function. By definition, the closed-loop system

is asymptotically stable. �

For the analysis of robust stability properties of the iNMPC controller, we apply defini-

tions and properties of Input-to-State Stability (ISS) [86, 63].

Definition 8. (Input-to-State Stability) The system,

x(k + 1) = f̂(x(k), hid(x(k)), w(k)), k ≥ 0, x(0) = x0 (5.15)

is said to be ISS in X if there exists a KL function β, and a K function γ such that for all

w ∈ W,

|x(k)| ≤ β(|x0|, k) + γ(|w|), ∀ k ≥ 0, ∀x0 ∈ X (5.16)

Definition 9. (ISS-Lyapunov function) A function V (·) is called an ISS-Lyapunov function

for system (5.15) if there exist a set X, K functions α1, α2, α3 and σ such that, ∀x ∈ X and

∀w ∈ W,

V (x) ≥ α1(|x|) (5.17a)

V (x) ≤ α2(|x|) (5.17b)

∆V (x,w) = V (f̂(x, hid(x), w))− V (x)

≤ −α3(|x|) + σ(|w|) (5.17c)

Lemma 5.2.2. [86, 63] Let X be a robustly invariant set for system (5.15) that contains the

origin and let V (·) be an ISS-Lyapunov function for this system, then the resulting system

is ISS in X.

To deal with robustness of the controller, we recognize that given u(k) and the nominal

model prediction z(k+1) = f(x(k), u(k)), there will exist a future mismatch x(k+1)−z(k+

1) = g(x(k), u(k), w(k)) at the next time step, giving rise to two different problems PN (z(k+

1)) and PN (x(k + 1)), with optimal costs JN (z(k + 1)) and JN (x(k + 1)), respectively. To

account for this, we define the mismatch term [109],

ε(x(k + 1)) := JN (x(k + 1))− JN (z(k + 1)). (5.18)
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Assumption 3. Under Theorem 3.2.2, there exists a local positive Lipschitz constant LJ

such that ∀x ∈ X,

|ε(x(k + 1))| ≤ LJ |g(x(k), u(k), w(k))|. (5.19)

Assumption 4. (Robust Stability Assumptions) For u = hid(x),

· g(x, u, w) can be described by K functions so that: |g(x, u, w)| ≤ αg(|x|) + σ(|w|).

· there exists a K function α4 and all w ∈ W and there exists a constant M > 0 such

that:

−ψ(x, u) +M(αg(|x|) + σ(|w|)) ≤ −α4(|x|) + σ(|w|).

Robust stability of the iNMPC controller can be established from the following theorem.

Theorem 5.2.3. (Robust ISS Stability of iNMPC [86, 63]) Under Assumptions 1 and 4,

with M ≥ LJ , the cost function JN (x) obtained from the solution of PN (x), is an ISS-

Lyapunov function and the resulting closed-loop system is ISS stable.

Proof: We compare the costs of the neighboring problems PN (x(k)) and PN (x(k+1)) and

introduce the effect of disturbances through ε(x(k + 1)),

JN (x(k + 1))− JN (x(k)) = JN (z(k + 1))− JN (x(k)) + JN (x(k + 1))− JN (z(k + 1))

≤ F (f(z∗N , hf (z∗N )))− F (z∗N ) + ψ(z∗N , hf (z∗N ))

−ψ(x(k), u(k)) + ε(x(k + 1))

≤ −ψ(x(k), u(k)) + ε(x(k + 1))

Again, the last two inequalities result from the fact that the solution of PN (x(k)) provides

a feasible solution to PN (z(k+1)) and the stage cost ψ(x(k), u(k)) is the only accumulation

point. Making use of Assumptions 3 and 4 to bound the mismatch term leads to,

JN (x(k + 1))− JN (x(k)) ≤ −α4(|x(k)|) + σ(|w(k)|)
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which fulfills (5.17c) withM ≥ LJ . From Assumption 1 we also know that JN (x(k)) satisfies

(5.17a)-(5.17b). Therefore, the desired result follows from Lemma 5.2.2. In the nominal

case, stability follows with M = 0. �

Corollary 5.2.4. (Asymptotic Robust Stability [86]) Assume that W = {0} and that As-

sumptions 1 -4 hold. Then the closed-loop system given by (5.1) and u = hid(x) is asymp-

totically stable.

Remark: The above results assume Lipschitz continuity of the optimal cost function and

of the control law. For the general nonlinear systems considered in this work, we guarantee

Lipschitz continuity in a restricted neighborhood (possibly small) of an optimal solution

satisfying the conditions of Theorem 3.2.2.

5.2.3 Computational Issues

It is clear that Assumption 2 is too restrictive since in practical applications PN (x) may be

computationally expensive to solve. This implies that the control action u = hid(x) cannot

be injected into the plant right after x is obtained but only once the solution of PN (x) has

been obtained. As a consequence, the resulting delayed feedback action will be inconsistent

with the current evolving state [108, 42, 28].

5.3 Advanced-Step Formulation

Consider that the state of the plant at tk is x(k) and that we know the control action u(k).

In the nominal case, the system evolves as in (5.2). As a consequence, starting at tk we can

predict the future state z(k+1) and solve the predicted problem PN (z(k+1)) in advance. If

this problem can be solved during the current sampling time, then u(k+ 1) = hid(x(k+ 1))

will already be available at tk+1. This simple strategy allows to remove the computational

delay and preserves the iNMPC controller properties. In the presence of disturbances,
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the plant will evolve with uncertain dynamics towards the true state x(k+ 1) = z(k+ 1) +

g(x(k), u(k), w(k)). In this case, the iNMPC control action cannot be computed in advance.

In order to account for this, we exploit the parametric property of the OCP problem to

compute a fast NLP sensitivity approximate solution of PN (x(k + 1)) around the available

nominal solution of PN (z(k + 1)) to obtain fast feedback. We call the resulting algorithm

the advanced-step NMPC controller (asNMPC):

In background, between tk and tk+1:

· Having x(k) and u(k), predict the future state through forward simulation z(k+1) =

f(x(k), u(k)). Set ηmpc
0 = z(k + 1) and solve the predicted problem P(ηmpc

0 ).

· At the solution s∗(ηmpc
0 , N), retain factors of K∗(ηmpc

0 , N) or compute sensitivity ma-

trix ∂s∗
∂ηmpc from (3.32).

On-line, at tk+1:

· Obtain the true state x(k+1) and set ηmpc = x(k+1). Compute the fast approximate

solution s̃(ηmpc, N) from sensitivity (3.33) or as a perturbed Newton step (3.36),

extract u(k + 1) = ṽ0(x(k + 1)) and return to background.

The above asNMPC algorithm yields the approximate control law,

u(k) = has(x(k)) (5.20)

with the following property,

Theorem 5.3.1. (Error Bound of asNMPC) From Theorem 3.2.2 with ηmpc
0 = z(k +

1) and ηmpc = x(k + 1) = z(k + 1) + g(x(k), u(k), w(k)), the approximation error be-

tween the asNMPC and iNMPC control laws satisfies |has(x(k + 1)) − hid(x(k + 1))| ≤

Las
h |g(x(k), u(k), w(k))|2 with a local positive Lipschitz constant Las

h .
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Proof : The asNMPC control action ṽ0(x(k+1)) is extracted from the approximate solution

s̃(x(k+1)) obtained from the perturbation ηmpc− ηmpc
0 = g(x(k), u(k), w(k)). From (5.13)

we have,

u(k + 1) = ṽ0(x(k + 1))

= v∗0(z(k + 1)) +K0 · (x(k + 1)− z(k + 1))

= v∗0(z(k + 1)) +K0 · g(x(k), u(k), w(k)). (5.21)

The error bound follows from (3.34) and the equivalence between (5.13), (3.33) and (3.36)

to give,

|u(k + 1)− v∗0(x(k + 1))| ≤ Las
h |g(x(k), u(k), w(k))|2. �

For later reference, we note that solving the forward problem PN (z(k+1)) = PN (f(x(k), has(x(k))))

is equivalent to solve the following extended problem PN+1(x(k), has(x(k))),

min
vl,zl

JN+1 := F (zN ) + ψ(x(k), has(x(k))) +
N−1∑
l=0

ψ(zl, vl)

s. t. zl+1 = f(zl, vl), l = 0, . . . N − 1

z0 = f(x(k), has(x(k)))

zl ∈ X, zN ∈ Xf , vl ∈ U. (5.22)

with fixed has(x(k)) computed from (5.21). In the following section, we will see that the cost

function JN+1(x, has(x)) associated with this problem can be used as a candidate Lyapunov

function to derive sufficient stability conditions for the asNMPC control law.

5.3.1 Stability Properties

To analyze the stability properties of the proposed controller we make use of the assumptions

and definitions of the standard NMPC formulation with a slight modification,

Assumption 5. (Computational Delay of asNMPC) The background calculations asso-

ciated with the solution of the forward problem PN (f(x, has(x))) can be obtained in one
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sampling time. Moreover, the sensitivity update can be obtained in a negligible amount of

time.

In the nominal case, the asNMPC and iNMPC controllers produce identical control ac-

tions. This follows from Theorem 5.3.1 with g(x, u, w) = 0. Under Assumption 5, Theorem

5.2.1 applies directly. For the analysis of the robustness properties of the asNMPC controller

it is necessary to account for the effect of NLP sensitivity errors.

As shown in Figure 5.2, we recognize that the forward simulation z(k+1) = f(x(k), u(k))

will predict the future state at tk+1. In the nominal case, this would give rise to the control

action hid(z(k + 1)) = has(z(k + 1)) that would be used to start the extended problem

PN+1(z(k + 1), hid(z(k + 1))) with cost J id(z(k + 1)) := JN+1(z(k + 1), hid(z(k + 1))).

In the robust case, the plant will evolve with uncertain dynamics generating x(k+1). For

the ideal NMPC controller this would give rise to the optimal control action hid(x(k + 1))

that would be used to solve PN+1(x(k + 1), hid(x(k + 1))) at the next time step with cost

J id(x(k + 1)) := JN+1(x(k + 1), hid(x(k + 1))). In reality, we compute the approximate

control has(x(k+ 1)) from (5.21) giving rise to problem PN+1(x(k+ 1), has(x(k+ 1))) with

cost Jas(x(k + 1)) := JN+1(x(k + 1), has(x(k + 1))). This is a suboptimal cost that needs

to be compared against the optimal cost J id(x(k + 1)). To account for this, we define the

following mismatch terms,

εs(x(k + 1)) := J id(x(k + 1))− J id(z(k + 1)) (5.23a)

εas(x(k + 1)) := Jas(x(k + 1))− J id(x(k + 1)) (5.23b)

where the first term accounts for the model mismatch as in (5.18) while the second term

accounts for approximation errors introduced by NLP sensitivity.

Assumption 6. Under Theorems 3.2.2 and 5.3.1 there exist positive Lipschitz constants
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LJ , Lh and Las
h such that ∀x ∈ X,

|εs(x(k + 1))| ≤ LJ(|x(k + 1)− z(k + 1)|+ |hid(x(k + 1))− hid(z(k + 1))|)
≤ LJ(1 + Lh)|g(x(k), u(k), w(k))| (5.24a)

|εas(x(k + 1))| ≤ LJ(|x(k + 1)− x(k + 1)|+ |has(x(k + 1))− hid(x(k + 1))|)
≤ LJL

as
h |g(x(k), u(k), w(k))|2. (5.24b)

By comparing the successive costs Jas(x(k)) and Jas(x(k+1)), we can arrive at a similar

ISS property as in Theorem 5.2.3.

Theorem 5.3.2 (Robust Stability of asNMPC). Under Assumptions 1, 4 and 5 with M ≥

LJ(1 +Lh +Las
h |g(x, u, w)|) > 0, the cost function Jas(x) obtained from the solution of the

extended problem PN+1(x, u) with u = has(x) is an ISS-Lyapunov function and the resulting

closed-loop system is ISS stable.

Proof : We compare the costs Jas(x(k)), Jas(x(k + 1)) and use the mismatch terms in

(5.24a)-(5.24b) to obtain,

Jas(x(k + 1))− Jas(x(k)) = J id(z(k + 1))− Jas(x(k))

+J id(x(k + 1))− J id(z(k + 1))

+Jas(x(k + 1))− J id(x(k + 1))

≤ −ψ(x(k), has(x(k))) + εs(x(k + 1)) + εas(x(k + 1))

(5.25)

the last inequality results from noting that the solution of PN+1(x(k), hid(x(k))) provides

a feasible solution to PN+1(z(k + 1), hid(z(k + 1))). Applying the bounds (5.24a)-(5.24b),

the result follows with M ≥ LJ(1 + Lh + Las
h |g(x(k), u(k), w(k))|) > 0. �

Note that if NLP sensitivity errors vanish (e.g. QP arising in linear MPC) then εas(x) = 0.

Accordingly, M ≥ LJ(1 + Lh) is sufficient and we recover similar (i.e. one step forward)

robust stability properties of iNMPC as in Theorem 5.2.3. In the nominal case, x(k+ 1) =

z(k + 1) and M = 0 is sufficient for nominal stability.
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Figure 5.2: Schematic representation of Advanced-Step NMPC controller behavior.

5.3.2 Computational Issues

The proposed asNMPC algorithm is expected to reduce the on-line computational cost by

two or three orders of magnitude. This results from the difference between the computa-

tional complexity of a single backsolve against that of the formation and factorization of

the KKT matrix [131]. However, note that Assumption 5 requires that the background

solution can be obtained in one sampling time. While a full-discretization strategy coupled

to a full-space interior-point solver allows to obtain relatively fast background solutions,

it is also necessary to derive an appropriate warm-start strategy to reduce the number of

iterations. For NMPC problems, a well-known strategy consists on shifting the optimal

values of the primal and dual variables of the current problem one step forward in time

[103, 34]. For instance, if the solution of the current problem PN (x(k)) is given by

s∗(x(k)) = {z0, ..., zN−1, zN , v0, ..., vN−2, vN−1, λ0, ..., λN−1, λN}. (5.26)

With this, we can generate the warm-start point so(x(k)) for problem PN (x(k + 1)) as,

so(x(k + 1)) = {z1, ..., zN , zN , v1, ..., vN−1, vN−1, λ1, ..., λN , λN} (5.27)

Note that when the model is perfect then z1 = z(k + 1) = x(k + 1). In this case, as

N → ∞ then so(x(k + 1)) → s∗(x(k + 1)). In other words, the warm-start point becomes
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a better and better approximation of the solution. This result follows directly from the

principle of optimality [34, 36]. On the other hand, as the model prediction deviates more

and more from the actual plant state then the quality of the warm-start point deteriorates.

In particular, if the perturbations are sufficiently strong, then the warm-start point will

eventually be taken out of the region of attraction of Newton’s method where fast local

convergence is expected [33, 93]. In this case, the NLP solver will require of appropriate

globalization strategies (e.g. line-search, trust-region) to converge to the optimal solution.

Note that the number of iterations required to solve the NMPC problem is in many cases

problem dependent since it depends on the inherent nonlinearity of the model. However, it

is important to recognize that there exists a complex interplay between the sampling time

length, the time required per iteration and the predictive capabilities of the model. If this

fact is recognized and properly exploited during early design stages of the controller, this

can also be helpful in reducing the solution times.

In the context of the asNMPC controller there exists a direct connection between the

quality of the NLP sensitivity approximations and the number of iterations required to

solve the background problems. Based on the previous discussion we can see that, for

sufficiently small perturbations, it is possible to use the NLP sensitivity approximations to

generate the shifted warm-start points for the background problems.

Finally, note that the previous stability analysis assumes that the objective function of

the NMPC problem is a convex least-squares function. Nevertheless, the computational

advantages of the asNMPC controller are general.

5.4 Illustrative Example

We consider a simulated NMPC scenario on the CSTR described in Appendix C. The

differential equations of the model are converted to the discrete-time form (5.2) through an

orthogonal collocation of finite elements discretization scheme. Here, each finite element
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represents a sampling time. To simulate the plant evolution, we introduce off-set free plant-

model mismatch by perturbing the nominal value of the reactor residence time θ from its

nominal θnom. In addition, we introduce Gaussian noise with σ standard deviation to the

predicted states at each time step to simulate the presence of measurement or estimation

errors coming from the plant. The noise is measured as a percentage on the nominal

state values. The OCP is formulated using a quadratic function ψ(z, v) = ẑTQẑ + Rv̂2

with Q = diag{1 × 106, 2 × 103}, R = 1 × 10−3, terminal weight F (z) = ẑTQẑ and

ẑ = z − zss, v̂ = v − vss where subscript ss denotes steady-state value.
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Figure 5.3: Steady-state map between temperature zt and cooling water flow rate v. Solid

vertical lines represent input constraints.

We contrast the performance of the iNMPC and asNMPC controllers under different

robust scenarios. Here, we choose N = 10 time steps along with a zero terminal constraint

zN = zss. The resulting NLP problems contain 18 × N variables and 6 × N constraints.
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The resulting NLPs can be solved in a negligible amount of time with IPOPT. In Chapter

8 we will see that the performance characteristics apply to much larger-scale systems as

well. The controllers first perform the transition between two open-loop unstable steady

states (SS1 and SS2) followed by a subsequent transition to a stable steady state, SS3. The

location of the three steady-states is illustrated in the v − zt bifurcation diagram in Figure

5.3. The control is required to satisfy 250 ≤ v ≤ 450 where the upper bound is set close

to the corresponding steady-state values at SS1 and SS2. We have seen that this tends

to amplify approximation errors and thus illustrate the advantages and limitations of the

proposed controller.

Scenario 1: In Figure 5.4 we illustrate the effect of increasing model mismatch due

to perturbations on the reactor residence time. From the top graph it is clear that for a

perturbation of (θ = 0.75θnom) the performance of both iNMPC and asNMPC is nearly

identical. Both controllers are able to handle relatively large perturbations. However, as

the mismatch is increased (θ = 0.5θnom) the performance of asNMPC tends to drift away

and the closed-loop system destabilizes due to the presence of approximation errors. This

is particularly evident in the second transition. Interestingly, for a slightly larger mismatch

(θ = 0.45θnom) the iNMPC controller is not able to reject the perturbation in the second

transition either, and the close-loop becomes unstable. In other words, both controllers

are able to tolerate similar levels of mismatch, suggesting that the effect of approximation

errors in the asNMPC controller is not very strong.

Scenario 2: Similar behavior can be seen when the controllers are subjected to simul-

taneous noise and model mismatch (θ = 0.75θnom) as illustrated in Figure 5.5. Again, for

small levels of noise (σ = 2.5%), the performance of the two controllers is almost identical.

The asNMPC controller is able to tolerate large levels of noise (up to σ = 7.5%) but its

performance deteriorates due to approximation errors, specially in the transition from SS1

to SS2.

Scenario 3: To illustrate the role of approximation errors on the stability of asNMPC,
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Figure 5.4: Scenario 1: Effect of plant-model mismatch on the performance of the con-

trollers.

we perform a more detailed analysis on the second transition for scenario θ = 0.45θnom

from Figure 5.4. The results are illustrated in Figure 5.6. In the top graph, we present

the profiles of the predicted z(k) and the actual x(k) temperatures. As can be seen, the

perturbation in θ creates large deviations between both states. The mismatch is expected

to generate a difference between the asNMPC control action has(x) from that of the iNMPC

hid(x) which is illustrated in the second graph. Interestingly, note that despite the relatively

large mismatch, the asNMPC and iNMPC control actions are identical before the system

destabilizes at time step 120. This would suggest that the system does not destabilize

in the first place due to approximation errors. To validate this, we present profiles in

the third graph of the left-hand side (LHS) and right-hand side (RHS) of (5.25), the

sufficient stability condition from Theorem 5.3.2. Stability implies that LHS ≤ RHS.

As can be seen, this condition is fulfilled up to time step 95. However, note that even

though the two control actions are identical at this point, there is a cross-over LHS ≥
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Figure 5.5: Scenario 2: Effect of noise on the performance of the controllers. Perturbation

on residence time at 25% below nominal value.

RHS and the system destabilizes. To explain this, we present profiles for the mismatch

terms in the bottom graph. As can be seen, the magnitude of the mismatch introduced

by approximation errors εas(x) tends to be smaller compared to that introduced by the

perturbations εs(x). However, at time step 95 the approximation errors become relevant

and, even though the injected control actions are identical, the combined mismatch terms

promote a cross-over in the stability condition (5.25) of Theorem 5.3.2. As predicted by

(5.25), this destabilizes the system. It has been observed that, once the system becomes

unstable, the oscillations become aggressive and the perturbations induce changes in the

active-set for the perturbed problems (e.g. control profiles at time steps 120 and 140). These

changes cannot be predicted by the NLP sensitivity calculation and require the solution of

a quadratic programming problem (see Chapter 3). While this might improve the quality of

the approximations, understanding the implications of active-set changes in the stability of

the asNMPC controller requires a deeper analysis of the Lipschitz continuity assumptions
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Figure 5.6: Scenario 3: Analysis of the effect of mismatch terms on the stability of the

advanced step controller.

made in this work.

5.5 Concluding Remarks

In this chapter, we derive the advanced-step NMPC (asNMPC) controller and analyze its

optimality and stability properties. The controller avoids feedback delays associated with

the on-line solution of large-scale OCPs. Here, the moving horizon OCP is formulated

with an advanced step control action and it is solved, in background, between sampling

times. The results demonstrate that the asNMPC controller has identical nominal stability

properties to the ideal NMPC controller without computational delay. In the presence of

Chapter 5. Nonlinear Model Predictive Control

88



5.5 Concluding Remarks

disturbances, the controller exploits the parametric properties of the OCP through NLP

sensitivity concepts to provide a fast on-line correction of the nominal solution. With this,

a rigorous bound on the loss of optimality can be established and related to the bounds

of the uncertainty description. This allows to characterize the robustness properties of the

controller through input-to-state stability concepts. In addition, we establish connections

of the asNMPC controller with classical Riccati-line regulators. In the following chapter,

we derive advanced-step strategies for moving horizon state estimation.
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Chapter 6

Moving Horizon Estimation

In this chapter, we discuss computational bottlenecks associated with on-line moving horizon

estimation (MHE) problems. MHE is a powerful optimization-based strategy for state

estimation but, as with NMPC, the on-line solution time becomes an issue in large-scale

applications. We propose an advanced-step strategy to overcome these limitations. In

addition, we present a detailed analysis of the KKT conditions of MHE problems to derive

strategies to extract covariance information from general NLP solvers. Finally, we establish

connections between the proposed advanced-step MHE estimator and traditional Kalman

filters.

6.1 Introduction

The main idea behind state estimation is to use limited input and output measurement in-

formation to infer the state of the process and to obtain estimates of time-varying uncertain

disturbances. This state information is required for the NMPC controller to compute the

control actions and can also be used to obtain a deeper understanding of phenomena taking

place in the process. In a general state estimation strategy, one starts with an a priori guess

of the current state and associated statistics (e.g. covariance matrix) and use the model to

predict the future state. At the next time step, measurement information is used to correct

this prediction. We use the corrected state and statistics of the prior information at the

next time step.

There exist different approaches to state estimation. Recursive approaches such as the
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6.1 Introduction

Kalman filter and its variations such as the Extended (EKF) and Unscented Kalman filter

(UKF) are the most popular approaches in industry and academia [21, 104]. This has been

mainly due to their practical simplicity and their solid foundations of probability theory.

Many other strategies such as particle filters, Luenberger and recursive least-squares are

also widely used. All these strategies present the common advantage that, if inequality

constraints (bounds) are ignored, the estimation problem can be decomposed in a recursive

manner (process one measurement at each time step). With this, they can avoid the solution

of on-line optimization problems.

The difficulty to handle bound constraints is, on the other hand, an important limitation

of recursive strategies since they can converge to regions of high probability but that are

physically meaningless (e.g. negative concentrations) [57]. Optimization-based estimation

strategies represent an important alternative to overcome these limitations [107, 116, 102,

104, 3]. Many of these strategies have evolved into what is known today as moving horizon

estimation (MHE). In MHE, the estimator problem is formulated as an optimization prob-

lem incorporating batches of past measurement data. The ability to cast the estimator as

a general optimization problem presents many advantages including the direct handling of

bound constraints and the ability to handle sophisticated dynamic models in a computa-

tionally efficient manner. Different strategies have also been proposed to summarize past

information in order to update the a priori state estimate and its statistics [102].

As in NMPC, a crucial limitation associated with MHE is that it requires on-line solutions

of computationally intensive optimization problems. In particular, the solution time of the

MHE problem affects the stability and performance of the NMPC as MHE provides the state

estimates required by the controller. As with NMPC, Newton-step strategies for MHE have

been previously proposed in [114, 43] in order to avoid these issues. In this section, we

derive an advanced-step MHE (asMHE) strategy able to some of the limitations associated

of Newton-based strategies [133]. In the spirit of the advanced-step NMPC controller, the

main idea is to use the dynamic model to predict the future measurements. We use this
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information to solve a predicted problem in between sampling times and correct this nominal

solution on-line using an NLP sensitivity approximation. In addition, we derive strategies

to extract covariance information from general NLP solvers and we establish connections

between the proposed estimator and Kalman filters.

6.2 Standard MHE Formulation

Consider the scenario in which a given system is located at sampling time tk and a past

measurement sequence {y(k −N), . . . , y(k − 1), y(k), u(k −N), . . . , u(k − 1)} is available.

Here, y(k) are the output measurements and u(k) are the input measurements. We assume

that the MHE estimator uses the perfect nonlinear model,

zl+1|k = f(zl|k, wl|k) = f̂(zl|k, u(k −N + l), wl|k), l = 0, .., N − 1

y(k −N + l) = χ(zl|k) + vl|k, l = 0, .., N

where χ(·) : <nx → <ny is a nonlinear mapping between the states and outputs. The

estimator uses the model to find the disturbance sequence {w0|k, ..., wN−1|k}, the noise

sequence {v0|k, ..., vN |k}, and the initial state z0|k that minimizes the cost function,

φ(ηmhe(k)) = Γ(z0|k) + LN (zN |k) +
N−1∑
l=0

Ll(zl|k, wl|k). (6.1)

with,

Γ(z0|k) = (z0|k − z̄0(k))T Π̄−1
0 (k)(z0|k − z̄0(k))

Ll(zl|k, wl|k) = (y(k −N + l)− χ(zl|k))
TR−1

l (y(k −N + l)− χ(zl|k)) + wT
l|kQ

−1
l wl|k

LN (zN |k) = (y(k)− χ(zN |k))
TR−1

N (y(k)− χ(zN |k)) (6.2)

over a past horizon containing N time steps. Here, the computed disturbances wl|k ∈ <nw

and states zl|k ∈ <nz are enforced to satisfy the constraints wl|k ∈W zl|k ∈ Z, respectively,

∀ l, k.
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The cost function φ : <Nnz+(N−1)nw → < contains a set of stage costs Ll : <nz+nu → <

and an initial penalty term Γ : <nz → < summarizing prior information before tk−N . Here,

z̄0(k) is the a priori state estimate with associated covariance Π̄0(k). The matrices Π̄0(k),

Ql, and Rl are assumed to be symmetric positive definite. In addition, we define the problem

data,

ηmhe(k) = (z̄0(k), Π̄−1
0 (k), y(k −N), ..., y(k − 1), y(k)) (6.3)

that fully defines the current MHE problem. In compact form, this leads to an NLP of the

form,

MN (ηmhe(k))
min

z0|k, wl|k φ(ηmhe(k)) = Γ(z0|k) + LN (zN |k) +
N−1∑
l=0

Ll(zl|k, wl|k)

s.t. zl+1|k = f(zl|k, wl|k), l = 0, ..., N − 1

zl|k ∈ Z, wl|k ∈W. (6.4)

From the solution of this problem we obtain the optimal disturbance sequence {w∗0|k...w
∗
N−1|k}

and state sequence {z∗0|k...z
∗
N |k} from which we extract the current estimate x̃id(k) = z∗N |k

of the true plant state x(k) with associated estimation error e(k) := x̃id(k)− x(k).

At the next sampling time tk+1, we get the new measurement y(k + 1) generated by the

control u(k) and define the new problem data ηmhe(k + 1). The measurements are shifted

forward by one sampling time in order to drop the oldest measurement and include the

current one. In addition, the a priori state estimate is updated by defining z̄0(k+1) = z∗1|k.

Finally, the associated covariance matrix is updated. As a standard practice, an EKF

update is used [102],

Π̄0(k + 1) = G0Q0G
T
0 +A0Π̄0(k)AT

0 −A0Π̄0(k)CT
0 (R0 + C0Π̄0(k)CT

0 )−1C0Π̄0(k)AT
0 (6.5)

where A0 = ∇zf(z∗0|k, w
∗
0|k), G0 = ∇wf(z∗0|k, w

∗
0|k), and C0 = ∇zχ(z∗0|k). It is important to

note that Π̄0(k+1) is only a linear approximate representation of the true covariance matrix.

In addition, under certain conditions such as strong observability, the a priori covariance

matrix does not need to be updated in order to achieve convergence of the estimator [3].
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Having the updated problem data ηmhe(k + 1), a new MHE problem MN (ηmhe(k + 1))

is solved to estimate the new state of the plant x(k + 1). In the following, if we assume

that the MHE problems can be solved instantaneously at each sampling time, we refer to

the resulting MHE algorithm as ideal MHE.

Remark: Note that the conceptual MHE formulation (7.3) implies that the input mea-

surements u(k) are fixed. Nevertheless, input errors can be modeled as disturbances w(k).

In addition, model parameters can be represented in this formulation by defining them as

artificial states.

6.2.1 Optimality Conditions

The MHE problem MN (·) is parametric in the data ηmhe. We simplify the notation by

dropping index k and adopt zl|k = zl, wl|k = wl, etc. The following results are based on

the post-optimal analysis of solutions of parametric MHE problems. Consequently, we will

simplify the presentation by handling the inequality constraints on the domains Z and W

implicitly (e.g. add a logarithmic barrier function as in Chapter 3).

The Lagrange function associated with problem M(ηmhe) is given by,

L = Γ(z0(ηmhe)) + LN (zN (ηmhe)) +
N−1∑
l=0

Ll(zl(ηmhe), wl(ηmhe))

+
N−1∑
l=0

λT
l+1(η

mhe)(zl+1(ηmhe)− f(zl(ηmhe), wl(ηmhe))) (6.6)

where λ(ηmhe) ∈ <nz are vectors of Lagrange multipliers. Note that all the primal variables

and multipliers become implicit functions of ηmhe. To simplify the analysis, we suppress

this dependence from the notation when the meaning is otherwise clear.

Any solution of a given MHE problemM(ηmhe) should satisfy the first-order KKT con-

ditions,
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∇z0L = ∇z0Γ +∇z0L0 −∇z0f
T
0 λ1 = 0 (6.7a)

∇zl
L = ∇zl

Ll + λl −∇zl
fT

l λl+1 = 0, l = 1, ..., N − 1 (6.7b)
∇wl
L = ∇wl

Ll −∇wl
fT

l λl+1 = 0, l = 0, ..., N − 1 (6.7c)
∇λl+1

L = zl+1 − fl = 0, l = 0, ..., N − 1 (6.7d)
∇zNL = ∇zNLN + λN = 0 (6.7e)

where fl := f(zl, wl), χl := χ(zl), Ll := L(zl, wl). For later reference we define Al =

∇zl
fl , Gl = ∇wl

fl , Cl = ∇zl
χl. NLP algorithms compute the search step towards the

optimal solution by linearizing the nonlinear KKT conditions (6.7) around the current

iteration. This gives rise to the KKT system,

P0∆z0 + F0∆w0 −AT
0 ∆λ1 = −rz0 (6.8a)

Pl∆zl + Fl∆wl + ∆λl −AT
l ∆λl+1 = −rzl

l = 1, ..., N − 1 (6.8b)
PN∆zN + ∆λN = −rzN (6.8c)

Wl∆wl + F T
l ∆zl −GT

l ∆λl+1 = −rwl
l = 0, ..., N − 1 (6.8d)

∆zl+1 −Al∆zl −Gl∆wl = −rλl+1
l = 0, ..., N − 1. (6.8e)

As observed in Chapter 5, if we make an explicit distinction between primal variables and

multipliers, the KKT system can be represented as in equation (6.9). Here, rzl
= ∇zl

L,rwl
=

∇wl
L, rλl

= ∇λl
L, Pl = ∇zlzl

L, Wl = ∇wlwl
L, and Fl = ∇zlwl

L, evaluated at the current

iteration. In condensed form, this becomes the augmented system (3.6a) solved in IPOPT.



P0 F0 −AT
0

FT
0 W0 −GT

0

P1 F1 Inz
−AT

1

FT
1 W1 −GT

1

. . . . . .
PN−1 FN−1 Inz

−AT
N−1

FT
N−1 WN−1 −GT

N−1

PN Inz

−A0−G0 Inz

−A1−G1 Inz

. . .
−AN−1−GN−1 Inz





∆z0
∆w0

∆z1
∆w1

...
∆zN−1

∆wN−1

∆zN

∆λ1

...
∆λN−1

∆λN



= −



rz0

rw0

rz1

rw1

...
rzN−1

rwN−1

rzN

rλ1

...
rλN−1

rλN


(6.9)
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In the context of MHE, we will denote the KKT matrix as K∗(ηmhe, N). As we have seen,

we can solve the KKT system efficiently using a direct sparse factorization. Nevertheless,

in order to obtain more insight on the particular structure of the MHE problem, we use

the forward Riccati decomposition described in Appendix D. This leads to the explicit

recursion,

∆zN = −ΠN (rzN + M−1
N rMN

) (6.10a)

∆λl = M−1
l (∆zl + rMl

) (6.10b)

∆zl−1 = −Πl−1(Fl−1W
−1
l−1G

T
l−1 −AT

l−1)∆λl

+Πl−1(Fl−1W
−1
l−1rwl−1

− rzl−1
−M−1

l−1rMl−1
) (6.10c)

∆wl−1 = −W−1
l−1F

T
l−1∆zl−1 +W−1

l−1G
T
l−1∆λl −W−1

l−1rwl−1
(6.10d)

l = N, ..., 1

where,

Π0 = (P0 − F0W
−1
0 F T

0 )−1

Ml+1 = (GlW
−1
l F T

l −Al)Πl(FlW
−1
l GT

l −AT
l ) +GlW

−1
l GT

l

Πl+1 = (Pl+1 + M−1
l+1 − Fl+1W

−1
l+1F

T
l+1)

−1

ΠN = (PN + M−1
N )−1

l = 0, ..., N − 1 (6.11)

and,

rM1 = rλ1 +G0W
−1
0 rw0 − (G0W

−1
0 F T

0 −A0)Π0(rz0 − F0W
−1
0 rw0)

rMl+1
= rλl+1

+GlW
−1
l rwl

− (GlW
−1
l F T

l −Al)Πl(rzl
+ M−1

l rMl
− FlW

−1
l rwl

)

l = 0, ..., N − 1 (6.12)

As with NMPC, note that the computational complexity of the MHE Riccati decomposition

strategy scales as O(N(nz + nw)3). This is an important observation because a similar
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strategy is used in the Kalman Filter [21]. For systems with a large number of states and

disturbances, this is not a computationally efficient approach. Moreover, in the presence

of unstable dynamics and/or non-informative measurements, the recursion can also lead

to numerical ill-conditioning. The ability to handle these degeneracies directly through the

NLP solver (e.g. using an inertia correction strategy), is one of the main practical advantages

of using a direct factorization strategy. Finally, note that the inertia correction strategy

of IPOPT can also be used in the context of state estimation to infer the observability

properties of the dynamic system.

6.2.2 Covariance Information

Extracting covariance information from the solution of the MHE problem is important

since it can be used as a measure of uncertainty and to update the arrival cost [102]. In

particular, note that setting Π̄0(k + 1) = M1 with M1 extracted from (6.11) provides a

stronger update than the traditional EKF update in (6.5) since it incorporates exact second

order information of the model. To see this, we extract M1 from (6.11),

Π0 = (P0 − F0W
−1
0 F T

0 )−1

M1 = (G0W
−1
0 F T

0 −A0)Π0(F0W
−1
0 GT

0 −AT
0 ) +G0W

−1
0 GT

0 . (6.13)

If we neglect all the second order contributions of the model and the cross interaction term

F0 then from (6.1) and (6.2), P0 = Π̄0(k)−1 + CT
0 R

−1
0 C0 and W−1

0 = Q0. If we apply the

matrix inversion lemma to P−1
0 we obtain,

Π0 = Π̄0(k)− Π̄0(k)CT
0 (R0 + C0Π̄0(k)CT

0 )−1C0Π̄0(k)

M1 = A0Π0A
T
0 +G0Q0G

T
0 (6.14)

which is the simplified EKF update formula (6.5). In classical estimation literature, the

simplified matrices Ml, l = 1, ..., N are known as the prior covariance matrices [21]. Using

similar simplifications, we can show that matrices Πl, l = 1, ..., N in (6.11) become,

Π−1
l = M−1

l + CT
l R

−1
l Cl, l = 1, ..., N. (6.15)
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These are normally known as the posterior covariance matrices where ΠN is the covariance

matrix of the current state estimate. The exact representation of this matrix can be obtained

from recursion (6.11).

If a Riccati decomposition is used to solve the KKT system in a tailored NLP solver,

the covariance matrices ΠN and M1 are obtained as a natural outcome of the recursion.

However, if a direct factorization is used (as in a general NLP solver like IPOPT) these

matrices are never formed. To avoid this limitation, note from (6.10a) that if we set rzN =

−Inz(:, j) in (6.9) at the solution (rest of the right-hand sides are zero) where Inz(:, j) is the

j-th column of the identity matrix then, ∆zN = ΠN (:, j). This can be illustrated from the

KKT system (6.9),



P0 F0 −AT
0

FT
0 W0 −GT

0

P1 F1 Inz
−AT

1

FT
1 W1 −GT

1

. . . . . .
PN−1 FN−1 Inz −AT

N−1

FT
N−1 WN−1 −GT

N−1

PN Inz

−A0−G0 Inz

−A1−G1 Inz

. . .
−AN−1−GN−1 Inz





∆z0
∆w0

∆z1
∆w1

...
∆zN−1

∆wN−1

ΠN (:, j)
∆λ1

...
∆λN−1

∆λN



= −



0
0
0
0
...
0
0

Inz (:, j)
0
...
0
0


(6.16)

This implies that the covariance matrix can be computed efficiently by performing nz

backsolves with the factored KKT matrix at the solution. This is an interesting result

because this implies that the reduced Hessian extraction capability described in Chapter 3

can also be used in this context.

Extracting M1 from the KKT matrix is not as straightforward. From (6.9) and (6.10)

we can prove that, setting all the right-hand sides in (6.9) to zero, adding the constraint

∆z1 = −Inz(:, j) and dropping the corresponding rows in the KKT system by adding slack

variables ∆νu recursively, leads to ∆λ1 = M−1
1 (:, j). That is,
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

P0 F0 −AT
0

FT
0 W0 −GT

0

P1 F1 Inz
−AT

1 Inz

FT
1 W1 −GT

1

. . . . . .
PN−1 FN−1 Inz

−AT
N−1

FT
N−1 WN−1 −GT

N−1

PN Inz

−A0−G0 Inz

−A1−G1 Inz

. . .
−AN−1−GN−1 Inz

Inz





∆z0
∆w0

∆z1
∆w1

...
∆zN−1

∆wN−1

∆zN

M−1
1 (:, j)

...
∆λN−1

∆λN

∆νu



=



0
0
0
0
...
0
0
0
0
...
0
0

Inz
(:, j)


(6.17)

In other words, it is possible to extract the prior covariance matrices at different time

steps from the KKT matrix using the fix-relax strategy described in Chapter 3.

6.3 Advanced-Step MHE Formulation

The parametric properties of the MHE problem can be exploited to design fast MHE strate-

gies able to minimize the on-line computational delay. Assume that at time tk we have the

estimate x̃id(k), z̄0(k), Π̄0(k)−1, the sequence {y(k − N), ..., y(k)} and the current control

u(k). We would like to use this information to obtain a fast approximation of the optimal

state estimate x̃id(k + 1) at tk+1 but we do not yet have the future measurement y(k + 1).

In order to overcome this, we propose the following sensitivity-based shifting strategy:

In background, between tk and tk+1:

1. Compute a disturbance-free (w(k) = 0) extrapolation of the current state z(k + 1) =
f(x̃id(k), u(k), 0) and corresponding output ȳ(k + 1) = χ(z(k + 1)) through forward
simulation.

2. Define the extended data η̄mhe(k+ 1) = (z̄0(k), Π̄−1
0 (k), y(k−N)...y(k), ȳ(k+ 1)) and

solve the extended problem MN+1(ηmhe
0 ) with ηmhe

0 = η̄mhe(k + 1) and N + 1 time
steps.
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3. At the solution s∗(ηmhe
0 , N + 1), hold factors of KKT matrix K∗(ηmhe

0 , N + 1) or
compute sensitivity matrix ∂s∗

∂ηmhe .

On-line, at tk+1:

1. Obtain the true measurement y(k + 1) and define the true problem data ηmhe =
ηmhe(k + 1). Compute an instantaneous approximate solution s̃(ηmhe, N + 1) from
sensitivity (3.33) or as a perturbed Newton step (3.36) and extract x̃as(k + 1) =
z̃N+1 and z̄0(k + 1) = z̃1. Extract Π̄0(k + 1) = M1 from the fixed KKT matrix
K∗(ηmhe

0 , N + 1).

2. Update data, set k := k + 1 and return to the background process.

If the above shifting strategy is used, the NLP sensitivity perturbation is |ηmhe−ηmhe
0 | =

|y(k+1)− ȳ(k+1)| so that the approximation error between the approximate and the ideal

state estimates is,

|x̃as(k + 1)− x̃id(k + 1)| = O(|y(k + 1)− ȳ(k + 1)|2). (6.18)

Figure 6.1: Schematic representation of estimation horizon for extended MHE problem.

Note that the covariance matrix Π̄0(k + 1) is extracted from K∗(ηmhe
0 , N + 1) which

is evaluated at s∗(ηmhe
0 , N + 1). The optimal covariance matrix should be extracted from

K∗(ηmhe, N+1) evaluated at s∗(ηmhe, N+1). From Lipschitz continuity of the KKT matrix
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(implied in Theorem 3.2.2) it can be shown that |K∗(ηmhe, N + 1) −K∗(ηmhe
0 , N + 1)| ≤

Ls|ηmhe − ηmhe
0 | for a given positive constant Ls. That is, the error bound between the

approximate and optimal covariance matrices can be shown to be O(|y(k+ 1)− ȳ(k+ 1)|).

From the optimality conditions (6.7) of the extended problem MN+1(η̄mhe(k + 1)) we

can show that λ∗N+1 = 0 since, by construction, ȳ(k + 1) = χN+1(zN+1). In addition, this

implies that w∗N = 0. At this nominal solution, the last element of the recursion (6.10)

becomes,

∆zN+1 = −ΠN+1rzN+1

= ΠN+1C
T
N+1R

−1
N+1

(
ȳ(k + 1)− χN+1(z∗N+1(ȳ(k + 1)))

)
. (6.19)

Once the new measurement y(k + 1) is obtained, we perturb the right hand side so that,

∆zN+1 = z̃N+1(y(k + 1))− z∗N+1(ȳ(k + 1))

= ΠN+1C
T
N+1R

−1
N+1

(
y(k + 1)− χN+1(z∗N+1(ȳ(k + 1))

)
= KN+1

(
y(k + 1)− χN+1(z∗N+1(ȳ(k + 1))

)
. (6.20)

Note that ȳ(k + 1) = χN+1(z∗N+1(ȳ(k + 1))) and x̃as(k + 1) = z̃N+1(y(k + 1)) so that,

x̃as(k + 1) = z∗N+1(ȳ(k + 1)) +KN+1 (y(k + 1)− ȳ(k + 1)) . (6.21)

This expression can be seen as an analog of the Kalman Filter update formula where KN+1

is the so-called Kalman matrix [21]. Here, z∗N+1(ȳ(k+ 1)) can be interpreted as the before-

measurement estimate. The sensitivity estimate x̃as(k + 1) = z̃N+1(y(k + 1)) can be inter-

preted as the after-measurement estimate which is an approximation of the optimal estimate

x̃id(k + 1) = z∗N+1(y(k + 1)).

The above expression can also be used to analyze the impact of the characteristics of the

dynamic system and of the design of the MHE problem on the approximation error. For

instance, it is clear that as N → ∞ (i.e. we add more information) then ΠN+1 → Π∞

(the steady-state covariance matrix) [102]. Therefore, the impact of the update becomes
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constant and small and the approximation error |x̃as(k+ 1)− x̃id(k+ 1)| → δ∞ for δ∞ > 0.

Similarly, if the system is strongly observable then the eigenvalues of ΠN+1 will be positive

and small and the approximation error will also tend to be small (i.e. the impact of an

additional measurement on the existent sequence is not that strong).

Remark: The proposed asMHE algorithm assumes that the background problemMN+1

can be solved within one sampling time. As with NMPC, we can warm-start the background

problems by shifting the NLP sensitivity solution one step forward to reduce the number of

iterations.

Remark: The solution of an extended problem with N + 1 steps is proposed in order to

minimize the approximation error and to achieve consistency with the ideal MHE estimator

(7.3) which has well-established convergence and stability properties [102]. For instance,

note that in order to solve the ideal MHE problem MN (ηmhe(k + 1)) at tk+1 we need the

a priori estimate z∗1|k and covariance M1 extracted from the solution of MN (ηmhe(k)).

Note also that the solution of the predicted problem MN+1(η̄mhe(k + 1)) for l = 0, ..., N

and the solution of MN (ηmhe(k)) are exactly the same since the predicted measurement

ȳ(k + 1) does not add information into the problem. As a consequence, the solution of the

extended problem implicitly gives us the required prior information. Nevertheless, if the

prior covariance matrix does not need to be updated at each time step, it is possible to

solve the predicted problem with N steps.

6.4 Illustrative Example

We consider a simulated MHE scenario on the nonlinear continuous stirred tank reactor

described in Appendix C. The objective of this case study is to analyze the effect of NLP

sensitivity errors on the performance of the asMHE estimator and contrast this with the

performance of the optimal or ideal MHE estimator. We use batch data generated from a

simulated scenario. The continuous-time dynamic model is converted to the discrete-time
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Figure 6.2: Effect of estimation horizon length N on the states covariance. Concentration

zc is measurement (left). Temperature zt is measurement (right).

form using orthogonal collocation on finite elements. The finite elements are placed in order

to match the sampling times. The resulting NLPs can be solved with IPOPT in a negligible

amount of time. In Chapter 8 we will see that the performance characteristics apply to

much larger examples as well. We use the reduced Hessian extraction and NLP sensitivity

capabilities described in Chapter 3.

We first compare the effect of the estimation horizon length N on the covariance matrix

ΠN of the state estimates for two cases. In the first case we assume that the concentration

zc is used as measurement to infer the temperature zt. In the second case we use zt to

infer zc. The shortest estimation horizon used contains 5 time steps (outer ellipsoids) while

the longest contains 50 time steps (inner ellipsoids). The resulting 95% confidence regions

are presented in Figure 6.2. It is clear that the eigenvalues of the covariance matrices

decrease as the horizon is increased. Moreover, note that the ellipsoids of the left graph

(concentration measured) are relatively lager than those on the right graph (temperature

measured). Consequently, we can conclude that the temperature zt is the most informative

measurement.
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Scenario 1. The simulated states are corrupted with Gaussian noise (σ = 0.01) and

we use z̄0 = [0.3 0.3] and Π̄−1
0 = diag{0.1,0.1} as initial guess. The weights for the output

deviations are set to 1
σ2 . In Figure 6.3 we compare the performance of both the ideal and

asMHE algorithms. As can be seen from from subplot b), both algorithms are able to

reconstruct the true state zc of the system based on temperature information. The asMHE

estimator is able to remove computational delay. Performance deterioration of asMHE

due to NLP sensitivity errors is not immediately evident from these profiles but can be

appreciated by comparing the cost functions of both MHE algorithms in subplot c). It

is interesting to observe that the performance of the asMHE algorithm degrades at some

time steps creating small deviations from the optimal cost function of the ideal MHE. This

is due to the fact that the difference between the predicted and actual measurement is

quite large, leading to large approximation errors. The difference in performance tends to

disappear as information is accumulated and identical performance is observed for the rest

of the operating horizon even in the presence of large levels of noise. These results are in

agreement with equation (6.21) and the observations of the previous sections.

Scenario 2. We add two disturbances on the activation energy Ea to test the robustness

of both MHE estimators. As can be seen from subplots a) and b) in Figure 6.4, the distur-

bance jumps at time step 75 and 100 disrupt the inferred state profile, but the estimators

are able to reject the disturbances. Interestingly, from the cost functions of subplot c) we

see that the approximation errors do not degrade the performance of the asMHE estimator.

6.5 Concluding Remarks

An advanced-step moving horizon estimation (MHE) algorithm is presented in this chapter.

The strategy solves a reference problem in between sampling times using a predicted future

measurement, and corrects on-line using fast nonlinear programming sensitivity calcula-

tions. Rigorous performance bounds are derived based on classical NLP sensitivity results.
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Figure 6.3: Performance comparison of advanced-step and ideal MHE strategies in the

presence of measurement noise.
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Figure 6.4: Performance comparison of advanced-step and ideal MHE strategies in the

presence of noise and disturbances.

Chapter 6. Moving Horizon Estimation

105



6.5 Concluding Remarks

A detailed analysis of the KKT conditions of the MHE problem is performed in order to

derive strategies for covariance information extraction from general NLP solvers and to es-

tablish connections with the traditional Kalman filter. It is demonstrated through a small

simulation study that the proposed algorithm is able to mimic the optimal performance

of ideal MHE. Having derived advanced-step formulations for NMPC and MHE, in the

following chapter we study the output feedback problem in which we couple them.
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Chapter 7

NMPC-MHE Coupling

In this chapter, we discuss issues related to the coupling of advanced-step strategies for

NMPC and MHE. In particular, we will demonstrate that the advanced-step NMPC con-

troller remains stable in the face of sensitivity approximation errors arising from both the

estimator and the controller.

7.1 Standard NMPC-MHE Formulation

Dynamic 
Process Model

NMPC

MHE

Plant

Figure 7.1: Scenario arising in NMPC and MHE coupling.

We make use of Figure 7.1 to describe a typical scenario arising in the interaction between

MHE and NMPC. To start the discussion, we consider a discrete-time dynamic model of

Chapter 7. NMPC-MHE Coupling

107



7.1 Standard NMPC-MHE Formulation

an uncertain plant of the form,

x(k + 1) = f̂(x(k), u(k), w(k)) = f(x(k), u(k)) + g(x(k), u(k), w(k)) (7.1a)

y(k + 1) = χ(x(k + 1)) + v(k + 1), (7.1b)

where x(k) is the true plant state at time instant tk and u(k) is the implemented control

action. The observed output y(k). The true plant deviates from the nominal prediction

due to the process disturbance w(k) and measurement noise v(k + 1).

Assume that the plant is currently located at sampling time tk with the output and input

measurements y(k − N), ..., y(k) and u(k − N), ..., u(k − 1), respectively. In addition, we

have an a priori estimate of the past state of the plant z̄0(k) with covariance Π̄−1
0 (k) that

generated this measurement history. For this analysis, we will define the MHE problem

data1 as,

ηmhe(k) := {y(k −N), ..., y(k))}. (7.2)

Using this information, we would like to compute an estimate x̃id(k) of the current state

x(k). In order to do this, we solve the MHE problem,

MN (ηmhe(k))
min
z0, wl φ(ηmhe(k)) = Γ(z0) + LN (zN ) +

N−1∑
l=0

Ll(zl, wl)

s.t. zl+1 = f̂(zl, wl), l = 0, ..., N − 1

zl ∈ Z, wl ∈W. (7.3)

From the solution of this problem, we obtain the optimal disturbance sequence {w∗0...w∗N−1}

and state sequence {z∗0 ...z∗N} from which we extract the current state estimate of the plant

x̃id(k) = z∗N with associated estimation error e(k) := x̃id(k)−x(k). Using this estimate, we

1The prior information and the input measurements are not defined here as part of the problem data.

This can be done without loss of generality since, in the advanced-step MHE strategy presented in Chapter

6, the sensitivity perturbation is only introduced through the output measurements.

Chapter 7. NMPC-MHE Coupling

108



7.1 Standard NMPC-MHE Formulation

define the NMPC problem data as ηmpc(k) := x̃id(k). The NMPC problem is,

PN (ηmpc(k)) min
vl,zl

JN (ηmpc(k)) := F (zN ) +
N−1∑
l=0

ψ(zl, vl)

s. t. zl+1 = f(zl, vl), z0 = x̃id(k) l = 0, . . . N − 1

zl ∈ X, zN ∈ Xf , vl ∈ U. (7.4)

The control action is extracted from the optimal trajectory {z∗0 ...z∗N v∗0, ..., v
∗
N−1} as u(k) =

v∗0 := hid(x̃id(k)). Here, hid(·) denotes the ideal NMPC feedback law. Note that this control

action is imperfect since the true state of the plant is x(k) and not the estimate x̃id(k). That

is, the estimation error acts as an additional disturbance. At the next time step tk+1, the

plant will evolve as,

x(k + 1) = f̂(x(k), hid(x̃id(k)), w(k)), (7.5a)

y(k + 1) = χ(x(k + 1)) + v(k + 1). (7.5b)

We shift the measurement sequence one step forward and update the prior information (if

necessary). We define the new data vector,

ηmhe(k + 1) := {y(k −N + 1), ..., y(k + 1)} (7.6)

and we solve the new MHE problem. Having the new state estimate x̃id(k+1) we solve the

next NMPC problem.

Since feedback is provided through the state estimate inferred from the output measure-

ments and not from the true state, this problem is normally known as the output feedback

problem. In general, the stability of this control scheme can only be guaranteed for a stable

estimator (i.e. stable or decaying estimator error) and by making use of the inherent robust-

ness properties of NMPC [90]. In addition, note that the NMPC-MHE coupling introduces

severe computational limitations since the feedback delay is now equal to the solution time

of the MHE problem plus the solution time of the NMPC problem.
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7.2 Advanced-Step Formulation

It is possible to minimize the on-line time required to solve the MHE problem and then

the NMPC problem to two fast backsolves using an advanced-step framework [126, 133].

Imagine that at time tk we know the control action u(k) and we would like to obtain an

estimate of the future state x(k + 1) but we don’t know the future measurement y(k + 1).

Nevertheless, we can use the current estimate x̃id(k) and control u(k) to predict the future

state and associated measurement,

z(k + 1) = f(x̃id(k), u(k)), (7.7a)

ȳ(k + 1) = χ(z(k + 1)), (7.7b)

and use this to complete the problem data,

η̄mhe(k + 1) := {y(k −N), ..., ȳ(k + 1)} (7.8)

to start the solution of the predicted MHE problem MN+1(η̄mhe(k + 1)) with N + 1 time

steps. We use the predicted state to define η̄mpc(k + 1) := z(k + 1) and start the solution

of the predicted NMPC problem PN (η̄mpc(k + 1)). Note that both problems are decoupled

so this can be done simultaneously and thus reduce the sampling time [43]. At the solution

of these problems, we hold the corresponding KKT matrices Kmhe
∗ and Kmpc

∗ of the MHE

and NMPC problems, respectively.

Once the true measurement y(k+1) becomes available, we compute a fast backsolve with

Kmhe
∗ to obtain the sensitivity approximation s̃mhe from which we extract the approximate

state estimate x̃as(k + 1). This estimate differs from the optimal state estimate x̃id(k + 1)

and the true state x(k + 1). Using the approximate state estimate we perform a fast

backsolve with Kmpc
∗ to obtain the sensitivity approximation s̃mpc from which we extract

the approximate control action,

u(k + 1) = has(x̃as(k + 1)) (7.9)
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which differs from the optimal control hid(x̃id(k + 1)).

To warm-start the background problems at the next sampling time, we use the approxi-

mate sensitivity solutions s̃mhe and s̃mpc to generate the shifted warm-start sequences for the

next problems MN+1(η̄mhe(k + 2)) and PN (η̄mpc(k + 2))[43]. From the solution of these

problems, we update the KKT matrices in background. Note that the approximate solu-

tions s̃mhe and s̃mpc can also be refined in background using fixed-point iterations (equation

(3.37)) with Kmhe
∗ and Kmpc

∗ before using them to generate the warm-start sequences. We

can summarize the proposed framework as follows:

In background, between tk and tk+1:

1. Use the current estimate x̃as(k) and the control u(k) to predict the future state z(k+

1) = f(x̃as(k), u(k)) and corresponding output measurement ȳ(k + 1) = χ(z(k + 1)).

2. Define the data

η̄mhe(k + 1) = {y(k −N), ..., ȳ(k + 1)}

and η̄mpc(k + 1) = z(k + 1). Use the available warm-start points smhe
o and smpc

o to

solve the predicted problems MN+1(η̄mhe(k + 1)) and PN (η̄mpc(k + 1)).

3. Hold the KKT matrices Kmhe
∗ and Kmpc

∗ .

On-line, at tk+1:

1. Obtain the true measurement y(k + 1) and define the true MHE data ηmhe(k + 1).

Reuse factorization of Kmhe
∗ to compute a fast approximation s̃mhe from (3.36) and

extract x̃as(k + 1).

2. Use x̃as(k + 1) to define the true NMPC problem data ηmpc(k + 1). Reuse the

factorization of Kmpc
∗ to compute fast approximation s̃mpc from (3.36) and extract

u(k + 1) = has(x̃as(k + 1)).
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3. If necessary, refine s̃mhe and s̃mpc. Generate the warm-starts smhe
o and smpc

o , set

k := k + 1 and return to background.

7.2.1 Stability Issues

It is clear that both the state estimate and the associated control action are suboptimal due to

the presence of NLP approximation errors. In particular, note that the approximation error

of the asMHE estimator propagates to the sensitivity error of the controller counterpart.

Here, we are interested in assessing the impact of these accumulated errors in the stability of

the output feedback system. From the controller point of view, we are interested in finding

sufficient conditions under which the closed-loop remains stable in the face of disturbances

and NLP sensitivity errors.

For the optimal or ideal NMPC controller (instantaneous optimal solutions), we con-

sider the neighboring costs of the extended problems (5.22) with perfect state information

J
hid(x(k))
x(k) := JN+1(x(k), hid(x(k))) and Jhid(x(k+1))

x(k+1) := JN+1(x(k+1), hid(x(k+1))) as refer-

ence points. As observed by Muske and Rawlings [90], since the implemented control action

is based on the state estimate x̃id(k) coming from MHE and not on the true state x(k),

we consider this as an additional disturbance to the closed-loop system through the cost

J
hid(x̂(k+1))
x̂(k+1) where x̂(k + 1) = f̂(x(k), hid(x̃id(k)), w(k)). From Lipschitz continuity of the

cost function we have,

|Jhid(x̂(k+1))
x̂(k+1) − Jhid(x(k+1))

x(k+1) | ≤ LJLfLh‖x(k)− x̃id(k)‖.

Explicit bounds and convergence properties on the estimator error ‖x(k) − x̃id(k)‖ can

be established for the MHE formulation (7.3) and related variants [102, 3]. With this,

we can treat the estimator error as a bounded disturbance g(x(k), u(k), w(k)) and define

x̃id(k) := x(k)+g(x(k), u(k), w(k)). This allows us to restate the following robustness result

for the combined asMHE and asNMPC strategies.
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Theorem 7.2.1 (Theorem 5.3.2 ). Assume that the NLPs for (7.3) and (7.4) can be solved

within one sampling time, and that nominal and robust stability assumptions (Assumption

1) for ideal NMPC hold, then there exist bounds on the noise w and v for which the cost func-

tion JN+1(x), obtained from the combined asMHE-asNMPC strategy, is an ISS-Lyapunov

function and the resulting closed-loop system is ISS stable.

7.3 Illustrative Example

We analyze the impact of increasingly stronger perturbations on the performance of the

advanced-step MHE/NMPC controller. The system is the nonlinear CSTR reactor de-

scribed in Appendix C. In this scenario, it is assumed that the temperature zt is measured

and the concentration zc is inferred. The objective of the controller is to manipulate the

cooling water flow rate u to perform two transitions while rejecting different levels of Gaus-

sian noise with standard deviation σ. The noise is measured as a percentage deviation from

the nominal measurement value. The noise is added at each time step to the controller pre-

dicted temperature to generate the plant data response x(k) and associated measurement

y(k). As we increase the noise level, the NLP sensitivity approximations of both the asMHE

estimator and asNMPC controller become less accurate. The estimator error is initialized

at zero. Therefore, the measurement noise is the only disturbance arising in the system.

As can be seen in Figure 7.2, if no measurement noise is added, the performance of

the approximate asMHE/NMPC controller is identical to that of an ideal counterpart.

Since the estimation error is zero at the beginning of the horizon, the predicted and actual

measurements are the same at each time step. Consequently, no NLP sensitivity errors are

introduced.

From Figure 7.3 we can see that the asMHE/NMPC controller is able to remove the

feedback delay and stabilize the system around the unstable points in the presence of a

medium level of noise of σ = 5%. Note that the random perturbations drive the closed-loop
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Figure 7.2: Performance of asMHE/NMPC controller in the absence of mesurement noise.

response to a completely different path compared to the previous case. The performance is

slightly affected by the sensitivity approximation errors. In particular, it is interesting to

observe that the control actions of the asNMPC and ideal controller are nearly identical.

This indicates that the asMHE estimator acts as a filter or buffer to the controller.

In Figure 7.4 we note that for a large level of noise of σ = 7.5%, the approximation

errors for both the estimator and the controller become larger but the closed-loop system

remains stable. The difference becomes evident when we compare the control actions of the

approximate and ideal controllers during the transitions. Nevertheless, note that when the

system stabilizes and the estimator error converges to zero both responses become identical.

7.4 Concluding Remarks

In this chapter, we analyze issues related to the coupling of advanced-step MHE and NMPC

strategies. Here, we see that the advanced-step strategy allows to decouple the background

MHE and NMPC problems and minimizes the on-line solution time to two fast backsolves.
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Figure 7.3: Performance of asMHE/NMPC controller with medium level of measurement

noise σ = 5%.
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Figure 7.4: Performance of asMHE/NMPC controller with large level of mesurement noise

σ = 7.5%.
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We briefly discuss stability issues to argue that stability bounds for the advanced-step

NMPC controller can be established in the presence of a stable MHE estimator. We demon-

strate through a small case study that the proposed approximate strategies mimic the per-

formance of an ideal output feedback NMPC-MHE controller. In the following chapter we

will demonstrate that these developments are applicable to large-scale systems as well.
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Chapter 8

Industrial Low-Density

Polyethylene Case Study

In this chapter, we make use of the proposed computational strategies to develop a model-

based operations framework for an industrial low-density polyethylene (LDPE) tubular

reactor process. We demonstrate that the strategies can handle a highly sophisticated

first-principles model and this can be exploited to improve the profitability of the process.

8.1 Introduction

Low-density polyethylene (LDPE) is an important commodity polymer in today’s economy

due to its high flexibility and relatively low-cost [75]. LDPE is mostly produced in tubular

reactors by free-radical polymerization of ethylene at supercritical conditions (2000-3000

atm and 150-350oC). A typical tubular reactor and corresponding temperature profiles for

the reactor core and jackets are sketched in Figure 8.1. LDPE reactors consist of long pipes

(1-3 km) with small inner diameters (5-10 cm) and thick reactor walls (2-5 cm) which are

divided into several reaction and cooling zones. Each zone is equipped with a jacket cooling

system used to remove the large amounts of heat produced by polymerization. Multiple

side streams containing monomer, comonomer, chain transfer agent (CTA), and initiators

can be fed along the reactor to control the temperature profile and the resulting polymer

properties. The large heat transfer areas and low degrees of back-mixing resulting in these

units permit the high throughput production of LDPE resins with unique processability
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Zone 1 Zone 2 Zone N-1 Zone N

Cooling 
WaterEthylene/CTA Side Streams

Length [m]

Reactor Core

Jacket

Initiators

Figure 8.1: Schematic representation of multi-zone LDPE tubular reactor (top). Typical

reactor core and jacket temperature profiles (bottom).

and end-use properties.

Despite the multiple benefits offered by LDPE tubular reactors, there exist several factors

limiting their performance. The first issue arises due to their distributed and multivariable

nature which gives rise to complex interactions along the pipe. This significantly compli-

cates the operability of these processes. The most common approach to cope with this

complexity is to find operating conditions able to produce a particular grade by trial and

error and/or experience. The resulting recipes are enforced strictly through an appropriate

regulatory control system. While these recipes work well in many cases, they tend to be

rather conservative and need to be constantly adapted for each new grade incorporated into

the product portfolio. A second important problem arising in LDPE reactors is the persis-

tent and slow deposition of polymer on the inner reactor walls [76, 22, 23]. The resulting

fouling layer is highly insulating and decreases the heat-transfer rate to the cooling jacket.

Since the polymerization reactions are highly exothermic, the production rate needs to be

dropped progressively in order to keep the temperature profile within safe limits and avoid

thermal runaway. The impact of fouling on the overall profitability of high-throughput
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LDPE reactors is extremely large. For instance, a decrease of 1% in the daily average

production rate can easily translate into millions of dollars of annual profit losses.

The potential economic benefits and high operational complexity of LDPE reactors have

motivated research efforts in many areas. Extensive experimental studies have been per-

formed in order to understand the fundamental interactions between the reactor design and

operating conditions and the resulting polymer properties [84, 51, 70]. This increased level

of understanding has translated into numerous first-principles models of different complex-

ity [73, 72, 124, 20, 19]. Some of these models have been used for off-line tasks such as

reactor design and dynamic transient analysis [97, 56]. As a natural step, it is desired to

use these models to perform on-line tasks such as real-time optimization and model-based

control [74, 127]. However, this has been so hindered by the high computational complex-

ity associated with LDPE tubular reactor models. In this chapter, we make use of the

previously proposed computational strategies to perform different optimization-based tasks

arising in the development of a model-based operations framework for LDPE processes.

8.2 Mathematical Modeling and Parameter Estimation

A number of comprehensive LDPE tubular reactor models are available in the literature [51,

20, 56]. These models differ in the mechanisms postulated to describe the polymerization

kinetics [70], the prediction approach of the final polymer properties [1], the prediction

methods of the reacting mixture physical properties [19], assumptions regarding the flow

regime and dynamic responses [56], and, finally, in the kinetic and transport parameters

[73].

Well known parameter estimation theory and methods have been applied only recently to

large-scale polymerization reactors models [112, 4]. In the particular case of LDPE tubular

reactors models, the parameter estimation problem turns out to be so large and complex that

it is usually simplified, using heuristics based on the knowledge of the kinetic mechanism
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[20, 19, 72]. In this section, we make use of the computational strategies described in

Chapter 4 to solve large estimation problems arising in the development of LDPE reactor

models.

8.2.1 Model Structure

The first-principles reactor model under consideration describes the gas-phase free-radical

copolymerization of ethylene with a comonomer (e.g. vinyl acetate) in the presence of

several different initiators and chain-transfer agents (CTAs) at supercritical conditions. The

mechanism postulated to describe the copolymerization kinetics is presented in Figure 8.2.

Here, the symbols Ii with i ∈ {1, . . . , NI},R.,M1,M2 and Si with i ∈ {1, . . . , NS} denote

the initiators, radicals, monomer, comonomer and CTA molecules, respectively. The symbol

ηi represents the efficiency of initiator i. The symbols Pr,s represent ”live” polymer chains

ending with a monomer unit; with r monomer units and s comonomer units. Similarly, Qr,s

are ”live” polymer chains with r, s degrees of polymerization but ending with a comonomer

unit and Mr,s are ”dead” polymer chains. The respective reaction rates for the monomers,

initiators, chain-transfer agents and ”live” and ”dead” polymer chains can be obtained by

combining the reaction rates of the elementary reactions describing their production and

consumption.

We recognize that a complete description of the polymer chain molecular weight distribu-

tions requires an extremely large number of population balances for the polymer chains. To

avoid this, the method of single moments is used to describe macromolecular properties of

the copolymer [105, 73] . The method of moments is based on the statistical representation

of the polymer average molecular weights and the compositional properties in terms of the

leading moments of the number chain-length distributions of the ”live” and ”dead” polymer

chains. In this model, the univariate number chain-length distributions for Pr,s, Qr,s and

Mr,s are considered. Accordingly, the moments of the number chain-length distributions
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Initiator(s) decomposition Incorporation of CTAs

Ii

fikdi−→ 2R i = 1, NI Pr,s + Si
kspi1−→ Pr+1,s i = 1, Ns

Qr,s + Si
kspi2−→ Qr,s+1 i = 1, Ns

Chain initiation Termination by combination

R. + M1

kI1−→ P1,0 Pr,s + Px,y
ktc11−→ Mr+x,s+y

R. + M2

kI2−→ Q0,1 Pr,s + Qx,y
ktc12−→ Mr+x,s+y

Qr,s + Qx,y
ktc22−→ Mr+x,s+y

Chain propagation Termination by disproportionation

Pr,s + M1
kp11−→ Pr+1,s Pr,s + Px,y

ktd11−→ Mr,s + Mx,y

Pr,s + M2
kp12−→ Qr,s+1 Pr,s + Qx,y

ktd12−→ Mr,s + Mx,y

Qr,s + M1
kp21−→ Pr+1,s Qr,s + Qx,y

ktd22−→ Mr,s + Mx,y

Qr,s + M2
kp22−→ Qr,s+1

Chain transfer to monomer Backbiting

Pr,s + M1
kfm11−→ P1,0 + Mr,s Pr,s

kb1−→ Pr,s or Qr,s

Pr,s + M2
kfm12−→ Q0,1 + Mr,s Pr,s

kb2−→ Qr,s or Pr,s

Qr,s + M1
kfm21−→ P1,0 + Mr,s

Qr,s + M2
kfm22−→ Q0,1 + Mr,s

Chain transfer to polymer β-scission of sec- and tert-radicals

Pr,s + Mx,y
kfp11−→ Px,y + Mr,s Pr,s

kβ1−→ M=
r,s + P1,0

Pr,s + Mx,y
kfp12−→ Qx,y + Mr,s Pr,s

kβ2−→ M=
r,s + Q0,1

Qr,s + Mx,y
kfp21−→ Px,y + Mr,s Pr,s

k′
β1−→ M=

r,s + P1,0

Qr,s + Mx,y
kfp22−→ Qx,y + Mr,s Pr,s

k′
β2−→ M=

r,s + Q0,1

Chain transfer to CTAs

Pr,s + Si
ksi1−→ P1,0 + Mr,s i = 1, Ns

Qr,s + Si
ksi2−→ Q0,1 + Mr,s i = 1, Ns

Table 1: Copolymerization kinetic mechanism of LDPE tubular reactor model.

5

Figure 8.2: Free-radical copolymerization mechanism of ethylene with a comonomer.
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are defined as,

λi
n =

∞∑
r=1

∞∑
s=1

(r + s)nRi(r, s) n ∈ {0, 1, 2}, i ∈ {1, 2} (8.1)

µn =
∞∑

r=1

∞∑
s=1

(r + s)nD(r, s) n ∈ {0, 1, 2} (8.2)

where R1(r, s) = [Pr,s], R2(r, s) = [Qr,s] and D(r, s) = [Mr,s]. With this, the number- and

weight-average molecular weights, the degrees of long chain branching (LCB) and short-

chain branches (SCB) per 1000 carbon atoms can be expressed in terms of the leading

moments of the univariate length-chain distribution.

The model complexity is often reduced by making some general validated assumptions

such as: the reacting mixture forms a single supercritical phase, plug flow is observed

along the reactor and net production rates of the radicals and ”live” polymer chains are

negligible [73]. Considering this, we can derive a set of molar and energy balances describing

the evolution of the reacting mixture, the jacket water and of the wall temperature along

the axial and time dimension. The design equations are presented in Appendix E. The

equations for neighboring zones are coupled through material balances at the feed points.

The model also presents complex multi-point boundary conditions due to the presence of

concurrent jacket water flows and due to the coupling of heat fluxes along the zone joints

(Figure 8.1). The complexity of the boundary conditions is a remarkable issue since it limits

the application of DAE solvers for their solution. It is commonly assumed that the LDPE

reactor is at a quasi-steady-state at all times. This is a reasonable assumption if the jacket

and wall do not undergo any dynamic transitions [56]. In dynamic scenarios, the reactor

core can still be assumed to be at steady-state since its time constant is small compared to

that of the wall and the jacket [56].

The accuracy of the tubular reactor model depends significantly on the prediction of the

reacting mixture properties. The model under study contains a large number of algebraic

equations required for the calculation of the physical, thermodynamic and transport proper-

ties. The properties that have more influence on the model accuracy are the mixture density,

Chapter 8. Industrial Low-Density Polyethylene Case Study

123



8.2 Mathematical Modeling and Parameter Estimation

heat capacity and viscosity. The gas phase density and heat capacity are obtained through

the Lee-Kesler equation of state [79]. The rest of the properties are obtained from complex

semi-empirical correlations. All the correlations used have been validated experimentally

and are reported in [73].

8.2.2 Model Implementation

To represent the overall dynamic model of Appendix E in general terms, we collapse all the

partial differential and algebraic equations (PDAEs) corresponding to conservation equa-

tions, thermodynamics, transport, and kinetic expressions for all the reactor zones into a

single set of PDAEs. This can be done by grouping the states corresponding to all zones into

a single variable vector and defining the continuity equations between zones as algebraic

equations. Following this reasoning, we represent the multi-zone reactor model as,

∂z

∂t
+ ν(t, x)

∂z

∂x
+ κ(t, x)

∂2z

∂x2
= fz(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.3a)

∂w

∂x
= fw(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.3b)

0 = fy(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.3c)

γ(t, x) = χ(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.3d)

z(0, x) = z0(x) (8.3e)

where z(t, x) ∈ <nz is used to represent the differential states in space and time with dis-

tributed initial conditions z0(x). These states correspond to the cooling water temperature

and the reactor wall temperature at all zones. Symbol w(t, x) ∈ <nw denotes differential

states in space such as the reacting mixture temperature, the molar flow rates of gaseous

components, the chain moments, among others. Symbol y(t, x) ∈ <ny denotes the alge-

braic states corresponding to the rest of the model variables such as the cooling water and

reacting mixture velocities, densities, heat capacities, among others. Symbol p(t) denotes

time-varying parameters used to account for unmodeled effects and uncertainty. Symbol

u(t) denotes the model inputs corresponding to side-stream inlet temperatures and flow
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rates, among others. In the actual reactor, the inputs can only be fed at the beginning and

end of each reactor zone. Consequently, no explicit dependence on the internal spatial di-

mension x is considered. For convenience, we will define a set of variables γ(t, x) ∈ <nγ that

map all the model states and inputs into a set of output and input variables of relevance

in the actual LDPE process. The boundary conditions of system (8.3) can be expressed in

the general form,

0 = ϕ

(
z(t, 0), z(t, xL),

∂z

∂x
(t, 0),

∂z

∂x
(t, xL), w(t, 0), u(t)

)
. (8.4)

On average, the dynamic reactor model will contain 3 PDEs, 20 ODEs and 500 AEs. The

equations are defined over very long axial horizons (1-2 km) containing all the zones and

time horizons of less than one hour.

LDPE reactors present steep temperature profiles in space. In addition, the reactor

presents steep profiles for some gaseous components such as the initiators that are totally

consumed immediately after they are injected into the reaction zones. On the other hand,

the quasi-steady-state assumption for the reactor core eliminates stiffness problems along

the time dimension. Motivated by these observations, we use a fine discretization mesh in

space and a coarse mesh in time. A finite element discretization scheme at Radau collo-

cation points is performed along the space dimension. Since in Radau collocation the last

collocation point lies at the boundary of each zone, this discretization scheme is particularly

useful in order to handle the multi-point boundary conditions arising in the jackets. We

use an implicit Euler discretization in time. In Figure 8.3, we present a conceptual repre-

sentation of the discretization approach for the reactor and jacket temperature profiles of a

particular zone.

After full discretization, we implemented the LDPE reactor model in algebraic form in the

modeling platform AMPL. The model is implemented in superstructure form as sketched in

Figure 8.1. In other words, the same model equations are used in both the cooling and the

reaction zones. In a cooling zone, the ethylene/CTA side streams and initiator flows are set

to zero. This model representation has been useful in implementing different reactor designs
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Figure 8.3: Schematic representation of discretization approach. Reactor core (top) and

Jacket (bottom).

and configurations. In addition, the discretization scheme can be adapted as required in

order to improve the accuracy and/or to obtain faster solutions.

8.2.3 Model Parameters

A common observation in most literature reports is the lack of a consistent data base of

kinetic parameters for LDPE reactor models. In some cases, the reported kinetic parameter

values vary by several orders of magnitude [73]. Because of this, it is often necessary

to re-estimate the parameters using experimental data from the particular laboratory or

industrial reactor under study [20, 19].

Industrial LDPE tubular reactors are also subject to persistent and uncertain variability

that needs to be considered if industrial data is used for model tuning. This requires the

selection and estimation of parameters to account for this. One of the most interesting

problems associated with the operation of LDPE tubular reactors is the persistent fouling

of the inner reactor wall. This phenomenon depends on many factors and it is difficult to

predict by means of simple mechanistic models [23]. A simple engineering way to handle this

problem is to infer on-line the heat transfer coefficients (Uin) from available temperature

measurements.
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As illustrated in Figure 8.1, a number of sidestream feeds of initiator mixtures (cocktails)

are distributed along the reactor. At each feed point, a typical mixture can include up

to four different initiators with different chemical properties. These initiators decompose

to generate the radicals that start the polymerization. The initiator decomposition reac-

tions include sets of complex reaction subnetworks involving the formation of highly active

intermediate species that can react among each other or with impurities in the reacting

mixture before generating the desired radicals. Therefore, there is an efficiency factor ηi

associated with the decomposition of each initiator. These initiator efficiencies depend on

the reacting mixture temperature and pressure, the degree of mixing at the feed points, and

the presence of other species such as impurities or CTAs. Moreover, the efficiency of an

individual initiator might vary with its concentration in the reacting mixture [84, 111]. In

LDPE reactors wide variations of the reacting mixture temperature, pressure, composition

and physical properties are observed. As a consequence, wide variations of the efficiencies

are expected as well along the reactor and over time due to the accumulation of impurities.

To account for this, the initiator efficiency for each reaction can be also be estimated for

each reaction zone in order to match the plant reactor temperature profile. Previous studies

have shown satisfactory results using this approach [74, 72]. However, in order to simplify

the parameter estimation task, it is usually assumed that there is a common efficiency for

all the initiators in the mixture. While this assumption provides sufficiently accurate model

predictions, it is expected that the estimation of the individual initiator efficiencies will

result in a better match of the reactor temperature profile.

8.2.4 Case Studies

The available measurement sets contain snapshots of the LDPE reactor behavior at nearly

stationary conditions. Consequently, we will assume that the LDPE reactor is at a quasi-

steady-state at all times. With this, the resulting LDPE reactor model is reduced to 525

DAEs defined over a long horizon in the axial space dimension (2-3 km). The available
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Measurement Input Output On-Line Sensor Laboratory

Inlet Pressure x x
Jacket Inlet Temperatures x x
Sidestreams Inlet Temperatures x x
Ethylene Sidestream Flow Rates x x
Comonomer Sidestream Flow Rates x x
CTA Sidestream Flow Rates x x
Initiator Flow Rates x x
Temperature Profile x x
Overall Conversion x x
Jacket Outlet Temperatures x x
Melt Index x x x
Weight-Average MW (Mww) x x
Number-Average MW (Mwn) x x
Polymer Density x x
Long-Chain Branching x x

Table 8.1: Summary of available measurements in industrial LDPE reactors.

measurement information is summarized in Table 8.1. As can be observed, there exists

limited on-line measurement information to monitor the performance of LDPE reactors. In

particular, measurements of the polymer macromolecular properties are seldom available.

Because of this, the polymer properties are usually inferred on-line through the reactor

temperature profile and melt index measurements. A typical industrial reactor can easily

contain around a hundred thermocouples to monitor the temperature profile.

The main objective of the parameter estimation procedure is to find the best set of on-line

adjustable parameters and kinetic parameters able to fit the reactor operating conditions

under the available scenarios. We use the standard least-squares and EVM formulations of

Chapter 4. In both formulations, the number of DAE constraints increases as we add data

sets into the problem. For instance, a problem with 5 data sets can contain up to 2500 DAEs.

The DAE model is discretized in space using Radau collocation on finite elements. A total

of 300 collocation points was necessary to achieve a good degree of accuracy. The resulting

discretized model contains around 11,000 highly nonlinear algebraic equations. This gives
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rise to a large-scale and sparse NLP. The resulting NLPs problems were implemented in

AMPL are solved with IPOPT. AMPL provides first and second derivative information

to the solver. We perform an inference analysis study on the estimated parameters using

reduced Hessian information extracted from IPOPT. In addition, we overcome memory

bottleneck limitations for problems with many data sets using the previously proposed

Schur decomposition strategy.

Estimation of On-line Adjustable Parameters

As a first case study, we consider the estimation of the initiator efficiencies and heat transfer

coefficients for different data sets. The parameters are estimated in order to match the

reactor temperature profile and the jackets inlet and outlet temperatures (e.g. close the

energy balance). This implicitly predicts the reactor conversion and polymer properties.

We compare our estimation approach with a simplified estimation approach currently used

as industrial standard [74, 72]. In the simplified approach, a single efficiency is assumed for

the initiator mixture in every zone. Each of these efficiencies is assumed to be constant along

the zone. The heat transfer coefficients (Uin
k ) are estimated for every cooling and reaction

zone and are assumed to be constant along each zone as well. Furthermore, the parameters

are estimated sequentially along the reactor, that is, solving one zone at a time. In addition,

ad-hoc simplifications are required in order to handle the multi-point boundary conditions

arising in the jackets and thus allow the use of standard DAE solvers. This approach is

followed in most studies because the resulting estimation problems are relatively small and

simple to solve [74, 72]. In the proposed approach, we estimate all the individual efficiencies

and HTCs for all the reactor zones simultaneously. With this all-at-once approach we can

capture downstream interactions of the parameters and measurements along the reactor. In

other words, we can incorporate more information into the problem. As a consequence, this

approach is expected to yield more reliable parameters. However, this comes at the expense

of having to solve much larger estimation problems.
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Figure 8.4: Plant and predicted temperature profiles using the base and the proposed

estimation strategies for two different grades.
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Grade Base This work % Improvement

A 13262.28 6628.43 50.02

B 17474.44 4458.40 74.48

Table 8.2: Optimal objective function values for estimation approaches. Grades A and B

cases.

We consider the production of two different polymer grades (A and B) in the same reac-

tor. Grade A is a copolymer with high comonomer content and grade B is a homopolymer,

both of them of high molecular weight. The reactor under study contains 13 zones but,

for confidentiality reasons, we only present the first few reaction zones. In Figure 8.4 we

illustrate the plant and predicted profiles using the base and the proposed all-at-once ap-

proaches. It is evident that the consideration of the individual efficiencies in the all-at-once

approach has a strong impact on the initial shaping of the profiles in the reaction zones.

This is due to the fact that the individual contribution of each initiator can now be consid-

ered at different temperature levels [84]. In addition, the all-at-once approach can handle

the multi-point boundary conditions more efficiently and thus it allows to close the reactor

energy balances more accurately. In Table 8.2 we contrast the optimal objective function

values for both estimation approaches. The objective function is the sum of squares of the

deviations between the plant and predicted temperatures along the reactor and jackets. As

can be seen, the proposed approach yields a closer match of the data. In Figure 8.5 we

present the conversion predicted by the model using both estimation approaches. Twenty

different grades, considering wide ranges of operating conditions and polymer properties

are presented in the graph. The proposed approach gives more consistent and accurate pre-

dictions. For the twenty grades considered, the average conversion deviation was reduced

from 12.1% using the base case approach to 2.5% with the proposed all-at-once approach.

In order initialize the NLPs of the all-at-once approach, we used the solutions obtained

from the sequential zone-by-zone strategy. The zone-by-zone estimation of the on-line pa-
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Figure 8.5: Plant and predicted conversions for estimation approaches analyzed. Results

for twenty different grades.
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rameters the sequential zone-by-zone strategy required 20-30 CPUs. Around 80-90% of the

solution time was spent for the integration of the DAE model for every zone. However,

this approach was found to be expensive for the solution of the overall estimation problem

since, in this case, the entire reactor DAE model needs to be integrated at each iteration.

The full integration takes around 4.5 CPUs per iteration. Following this reasoning, the

sequential approach was expected to become expensive in the solution of more complicated

estimation problems and it is was not considered further in this study. Significant reduc-

tions on the overall CPU time were obtained using the proposed all-at-once approach. Here,

we use linear solver MA27 to factorize the KKT matrix at each iteration in IPOPT. The

problems are solved on a 3.0 GHz, 1 Gb RAM, Pentium IV PC. Since a good starting point

is provided and the inequality constraints are never active at the solutions, a small initial

barrier parameter µ of 1×10−6 was set for all calculations. In all cases, the reduced Hessian

matrix was found to be positive definite at the solution with large eigenvalues ranging from

102 to 1010. Accordingly, inertia correction was not necessary at the solution and we can

conclude that the parameters are unique. The computational results for Grades A and B

are presented in Table 8.3. The NLPs are quite large, contaning around 11,000 constraints

and 32 degrees of freedom (corresponding to the entire set of on-line adjustable parameters).

Nevertheless, the solution approach is fast, taking around 1.5 CPUs per iteration. Note also

from Table 8.3 that the KKT matrix is very sparse. For instance, if we take the number of

nonzeros in the Jacobian of the first case and divide this by the number of constraints, we

see that the Jacobian has around 14 nonzero entries per row (a total density of ≈0.13%).

Estimation of Kinetic Parameters

The all-at-once estimation approach provides accurate matches of the reactor temperature

profile. With this, we can predict the reactor conversion and the macromolecular properties.

To refine the predictions of these properties, we estimate the kinetic constants (Π in (4.1)

and (4.2)) over different ranges of operating conditions. The kinetic rate constants presented
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Grade Constraints Parameters LB UB Iterations CPUs NZJ NZH

A 11955 32 374 361 11 17.03 166425 87954

B 11283 32 374 361 8 10.06 138666 76890

Table 8.3: Computational results for single-set NLP problems. On-line parameter es-

timation case studies. LB=number of lower bounds, UB=number of upper bounds,

NZJ=number of nonzeros in Jacobian, NZH=number of nonzeros in Hessian.

in Figure 8.2 are functions of the reacting mixture temperature and pressure. These have

the following form,

ki = k0
i exp

[
−∆Eai + P∆Evi

RT

]
(8.5)

where subindex i belongs to the entire set of elementary reactions in the kinetic mechanism.

Symbol k0
i denotes the pre-exponential factor, ∆Eai the activation energy, ∆Evi the acti-

vation volume and P the reactor pressure. A large portion of the model nonlinearity comes

from the multiple Arrhenius expressions. Therefore, the estimation of kinetic parameters is

a much more computationally intensive problem.

Since the number of kinetic parameters is large, the estimation procedure has been tra-

ditionally decomposed into subproblems with fixed subsets of parameters [72][20][19]. For

instance, a first step is to estimate the propagation and termination kinetic rate constants

to match the reactor overall conversion. The second step consists of estimating other ki-

netic parameters to match macromolecular properties such as number- and weight-average

molecular weights, LCB, and polymer density. This iterative approach is repeated until the

best set of parameters is obtained. In the all-at-once approach we include multiple data

sets over wide ranges of operating conditions in order to estimate the whole set of kinetic

parameters and on-line adjustable parameters. Consequently, this approach is expected to

give more reliable parameters but it also leads to highly complex problems.

We consider the estimation of the kinetic parameters for homopolymerization reactions.
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The homopolymer grades are produced on the same reactor operating over different ranges

of temperature, pressure, and concentration of CTA. For all the problems solved, the entire

set of on-line and kinetic parameters are estimated to match the reactor and jacket temper-

atures, overall reactor conversion, number- and weight-average molecular weights, polymer

density and degree of long-chain branching (LCB). Nominal values of the macromolecular

properties are used. The motivation behind systematic estimation strategies becomes clear

from Figure 8.6. Here, two different 95% ellipsoidal confidence regions are presented for the

pre-exponential factor and activation energy of the propagation rate constant (kp11). The

ellipsoids were obtained from the solution of standard least-squares estimation problems

with one and three data sets. It is clear that there is a large uncertainty associated with the

point estimation of the pre-exponential factor. This uncertainty can be reduced significantly

by adding more data sets in the problem. On the other hand, note that a single data set is

informative enough to obtain a tight confidence interval for the activation energy. This can

be explained from the fact that the temperature profile along the reactor involves a wide

range of temperatures. In other words, the measurements seem to be highly informative.

In Figure 8.7 we present the confidence regions for problems with three and six data sets.

The ellipsoid obtained from the six data set problem is tighter, but the relative reduction

is not as dramatic as in the previous case.

Multi-set estimation problems were solved using the standard least-squares and EVM

formulations. For standard least-squares, we estimate 32 on-line adjustable parameters for

each data set along with 28 kinetic parameters. The heat of polymerization is estimated as

well. For the EVM formulation, we have many more degrees of freedom. In particular, the

degrees of freedom for every set are increased by 52 input variables corresponding to the

multiple measurements distributed along the reactor. In all cases, the estimation problems

are initialized using the values of the on-line adjustable parameters obtained in the previous

section. The computational results are presented in Table 8.4. Note that the number of

iterations remains consistent among the different problems. The availability of exact first
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Figure 8.6: Confidence regions for the parameters of the propagation rate constant kp11.

Results with 1 and 3 data sets.
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Figure 8.7: Confidence regions for the parameters of the propagation rate constant kp11.

Results with 3 and 6 data sets.

and second order derivative information is crucial to achieve this efficiency. Note also that

the sparsity of the KKT matrix (number of nonzeros in Jacobian and Hessian) remains

unaltered between the least-squares and the EVM formulations. This explains the similar

computational times required by the algorithm despite the dramatic increase of the number

of degrees of freedom in the EVM formulation. The largest estimation problem was solved

in less than 20 minutes on a 3.0 GHz, 1 Gb RAM, Pentium IV PC. Problems with more

data sets were not solved in this preliminary study due to limitations in computer memory

requirements arising in the factorization of the KKT matrix. In particular, it was found

that the minimum degree preordering strategy used by MA27 introduces a large degree of

fill-in in the factors of the KKT matrix.

The model predictions were notably improved using the new set of parameters. In Figure

8.8 we compare the plant and model predictions for the overall rector conversion, number-

and weight-average molecular weights and degree of LCB. We considered a total of six
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Data Sets Constraints DOF LB UB Iterations CPUs NZJ NZH

3 33900 121 1246 1207 68 451.51 520275 552738

3 (EVM) 33952 277 1366 1327 57 345.82 520636 553080

6 68421 217 2467 2389 58 900.21 1058412 1119258

6 (EVM) 68627 529 2653 2575 71 1010.74 1059512 1119780

Table 8.4: Computational results for multi-set NLP problems. Homopolymerization case

study. LB=number of lower bounds, UB=number of upper bounds, NZJ=number of nonze-

ros in Jacobian, NZH=number of nonzeros in Hessian, DOF=degrees of freedom.

Conversion(%) Mwn(%) Mww(%) LCB(%) Density(%)

Base Parameter Set 1.49 23.24 18.58 19.20 0.0965

New Parameter Set 0.12 6.20 3.31 6.27 0.0875

Table 8.5: Average deviations between plant and model predictions for reactor conversion

and grade macromolecular properties for 14 different grades. Homopolymerization case

study.

estimation and eight validation cases including different reactor configurations and wide

ranges of operating conditions. These grades span a range of 30-37% on the overall reactor

conversion, 14500-19500 g/gmol on the number-average molecular weight, 150,000-450,000

g/gmol on the weight-average molecular weight, and 2.4-2.8 on the number of LCBs per

1000 carbon atoms. Average values of the deviations between the model predictions and the

plant measurements for different polymer properties are presented in Table 8.5. We compare

the model deviations using the base set of kinetic parameters provided from industry and

the new parameters. As can be seen, the new predictions outperform those obtained using

the base set in all cases.

In all the estimation studies, we assumed equal initiation and propagation rate constants
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Figure 8.8: Homopolymer grade macromolecular properties. Plant and model predictions.

[73]. The rate constants for termination by combination and disproportionation were also

assumed to be the same. We have found that the simultaneous estimation of the initiator

efficiencies and the initiator decomposition rate constants leads to non-unique solutions (e.g.

they cannot be estimated independently). Therefore, the decomposition rate parameters

were fixed to their nominal values provided by peroxide vendors. Most of the estimated

parameter values lie well between reported ranges. However, it has been found that the

estimated activation volumes for the propagation, chain transfer to monomer and back-

biting reactions have opposite signs to those reported in the literature [73]. With the base

set of parameters the model could not predict the effect of large pressure variations on the

weight-average molecular weight. With the new set of estimated parameters, the model

was able to predict this pressure effect but some of the estimated activation volumes have

opposite signs. We believe that this due to a structural limitation of the model. For

instance, decreased polymer solubilities in the gas phase due to large pressure fluctuations
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are not taken into account in current model structure. It seems that the activation volumes

are compensating for this. It has also been found that the estimated β-scission reaction

rates present wide confidence intervals. These parameters can only be estimated reliably if

measurement information of the polymer vinylenes and vinylidenes content is included in

the problem. Unfortunately, this information was not available for this study.

Exploitation of Multi-Set Structure

As we have seen, it is possible to obtain more reliable parameters as we incorporate mea-

surement information into the problem. On the other hand, we have also seen that the

associated NLPs become quickly intractable due to the size and complexity of the LDPE

reactor model. The key bottleneck is the factorization the KKT matrix. Here, we apply

the parallel decomposition strategy of Chapter 4 to overcome these limitations [132].

To formulate the EVM estimation problem (4.2) as a multi-scenario NLP of the form in

(4.4), the variables are separated by data sets or scenarios k. For the implementation of

this strategy, each data set is defined as a separate NLP model in AMPL which provides

the required derivative information for each instance. Inside each model, we indicate the set

of variables corresponding to the global parameters Π. This is required to build the linking

variables vector inside IPOPT.

In Figure (8.9), we present computational results associated with the solution of multi-

scenario NLPs. The results were obtained in a Beowulf-type cluster using standard Intel

Pentium IV Xeon 2.4Ghz, 2Gb RAM processors running on Linux. The parallel results

are compared against those obtained from the direct factorization of the multi-scenario

problems in a single processor. The MA27 linear solver with a minimum degree ordering

strategy was used for all the sparse factorizations. The dense linear solver DGESV from

the LAPACK library was used to factorize the Schur complement.

As can be seen, the solution of the multi-scenario NLPs through the direct factorization
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Figure 8.9: Total time and number of iterations for the solution of multi-scenario NLPs

with IPOPT. Direct factorization and parallel implementations.
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approach becomes intractable after 9 data sets. In contrast, the parallel implementation is

able to overcome this memory bottleneck allowing the solution of problems with over 32

data sets. Here, the largest NLP contains around 399,632 constraints and 2,170 degrees

of freedom. Note that the solution time increases significantly in the direct factorization

approach as we add more data sets. In particular, it is interesting to observe that the

complexity of this strategy scales almost quadratically with the NLP size. The solution of

a 9 data set problem with a direct factorization takes more than 30 minutes. In contrast,

the parallel decomposition takes consistently less than 10 minutes regardless of the number

of data sets.

Note that the solution times and number of iterations do not seem to follow any partic-

ular trend, presenting ”random” jumps as we add or remove data sets. It is important to

emphasize that this behavior is due to the complexity of the problem and not to the conver-

gence properties of the optimization algorithm (e.g. the solution of the 32 data set problem

requires fewer iterations than that with 20 data sets). This behavior is mainly attributed

to the nonlinearity of the constraints and ill-conditioning of the KKT matrix. In particu-

lar, the high nonlinearity of the constraints gives rise to directions of negative curvature.

Because of this, different number of inertia correction steps (e.g. more factorizations per

iteration) are required for different problems. In order to avoid this, we present in Figure

(8.10) computational results on the time required per iteration and per factorization of the

KKT matrix as a more consistent measure of the scalability of the decomposition strategy.

Note that the effects of the problem complexity are still reflected in the time required per

iteration but not on the time per factorization. Nevertheless, the time per iteration can be

consistently kept below 5 seconds while the factorization in the direct factorization approach

can take as much as 35 seconds before running out of memory.

In Figure 8.11 we present a summary of the computational results for both the direct fac-

torization and the parallel decomposition approaches. From the direct factorization results,

it is possible to observe that the number of iterations taken by the interior-point algorithm
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Figure 8.10: Time per iteration and per factorization of the KKT matrix during the solution

of multi-scenario NLPs with IPOPT. Direct factorization and parallel implementations.
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is not affected as we add degrees of freedom to the estimation problem. It is important to

emphasize that this desired convergence properties can be obtained with full-space solvers

using exact derivative information. As the proposed parallel decomposition strategy does

not alter the core NLP algorithm in IPOPT, these desired convergence properties are re-

tained.

8.3 Nonlinear Model Predictive Control

In this section, we present a Nonlinear Model Predictive Control (NMPC) application to

optimize the operation of LDPE reactors. We start with a traditional design in which the

controller is used to reject process disturbances and keep the reactor outputs at targets. We

then describe an economics-oriented NMPC/D-RTO design in which the controller optimizes

the overall production rate while rejecting the process disturbances.

The typical decision-making hierarchy in industrial LDPE processes consists of a target

setting layer in which an operator receives the production schedule of different polymer

grades. The operator sets the temperature profile of the reactor that is known by experience

to give the desired polymer properties (e.g. melt index). The temperature set-points are

communicated to multiple PID controllers distributed along the reactor that try to keep the

temperature profile at the desired target. The main tasks of the regulatory control layer is

to reject short-term disturbances and to follow the temperature profile set-points provided

by the operator during grade changes.

As shown in Figure 8.12, the PID controllers are normally grouped by zones in order

to regulate the local temperature profile. Input variables such as the initiator flow, the

jacket inlet temperature, the jacket inlet flow, and the side stream temperatures can be

manipulated independently by each local set of controllers. The fouling onset is, in par-

ticular, a difficult disturbance to reject. As the reactor fouls, the controllers need to keep

the temperature profile at target. Because of this, they will tend to compensate by drop-
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NLP Statistics Serial Parallel

NS m DOF LB UB It θtotal (s) θit (s) It θtotal (s) θit (s) θkkt (s)

1 12319 92 425 412 28 78.24 2.79 28 78.24 2.79 1.40

2 24638 159 850 824 42 280.86 6.69 39 115.22 2.95 1.54

3 36957 226 1275 1236 49 500.75 10.22 33 100.62 3.05 1.48

4 49276 293 1700 1648 44 604.45 13.74 28 80.08 2.86 1.48

5 61643 361 2126 2061 35 603.20 17.23 40 131.76 3.29 1.59

6 73962 428 2551 2473 56 1251.87 22.35 26 78.77 3.03 1.58

7 86953 495 2976 2885 63 1624.59 25.79 91 291.91 3.21 1.38

8 99944 562 3401 3297 63 1994.17 31.65 52 155.90 3.00 1.39

9 112935 629 3826 3709 62 2136.82 34.46 39 121.55 3.12 1.60

10 125254 696 4251 4121 38 115.34 3.04 1.39

12 137573 763 4676 4533 70 234.50 3.35 1.53

14 150564 830 5101 4945 48 189.94 3.96 1.79

16 200512 1098 6801 6593 99 398.35 4.02 1.79

18 225822 1232 7651 7417 66 268.03 4.06 1.76

20 251132 1366 8501 8241 119 545.19 4.58 2.02

22 275098 1500 9351 9065 84 363.14 4.32 1.85

24 300408 1634 10201 9889 82 301.13 3.67 1.58

26 325046 1768 11051 10713 105 375.00 3.57 1.57

28 349684 1902 11901 11537 47 147.14 3.13 1.69

30 374994 2036 12751 12361 57 212.31 3.72 1.81

32 399632 2170 13601 13185 54 212.15 3.93 1.81

Table 2: Summary of computational results associated to the solution of multi-scenario NLPs with IPOPT.

m=number of constraints, DOF=number of degrees of freedom, LB=number of lower bounds, UB=number

of upper bounds, It=number of iterations, θtotal=total wall clock time, θit=wall clock time per iteration,

θkkt=wall clock time per factorization of KKT matrix.

22

Figure 8.11: Summary of computational results associated with the solution of multi-

scenario NLPs with IPOPT. m=number of constraints, DOF=number of degrees of free-

dom, LB=number of lower bounds, UB=number of upper bounds, It=number of iterations,

θtotal=total wall clock time, θit=wall clock time per iteration, θkkt=wall clock time per

factorization of KKT matrix.

Chapter 8. Industrial Low-Density Polyethylene Case Study

145



8.3 Nonlinear Model Predictive Control

Local PID
Control

Local PID
Control

Local PID
Control

Figure 8.12: Regulatory control structure of LDPE tubular reactors.

ping the initiator flows and, implicitly, the production levels. It is important to emphasize

that the controllers do not have any knowledge on the production levels of the reactor.

Their objective is to keep the temperature profile at target which is set by the operator.

Another problem that arises with a regulatory control architecture is that the controllers

cannot forsee downstream interactions arising along the reactor. Because of this, the con-

trol of polymer properties at the reactor exit can become complicated. It is believed that

a centralized model-based control strategy able to take all these interactions into account

would achieve a much better performance. Such an strategy is illustrated in Figure 8.13.

In particular, we are interest in exploiting the availability of detailed first-principles models

to develop NMPC control strategies for LDPE reactors.

8.3.1 NMPC Problem Formulation

In the previous off-line parameter estimation study we assumed that the reactor was always

at a quasi-steady-state. As we have seen, this is a reasonable assumption if the reactor

jackets and wall do not undergo dynamic transitions. On the other hand, for NMPC we

need to include the dynamics of the wall and of the jacket.

Consider the scenario in which the LDPE process is located at sampling time tk. Here, the
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Figure 8.13: Centralized NMPC control structure of LDPE tubular reactors.

state of the process is given by at zk(x). Using this state, we would like to use the dynamic

first-principles model to compute optimal policies for the controls u(t) over a future horizon

[tk, tk+N ] with sampling times of equal length length δ = tk+1 − tk that minimize a given

performance index Φk. The NMPC problem formulation is given by,

min

u(t) Φk (8.6a)
s.t.

∂z

∂t
+ ν(t, x)

∂z

∂x
+ κ(t, x)

∂2z

∂x2
= fz(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.6b)

∂w

∂x
= fw(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.6c)

0 = fy(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.6d)
γ(t, x) = χ(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.6e)

0 ≥ g(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.6f)
z(0, x) = zk(x) (8.6g)

0 = ϕ

(
z(t, 0), z(t, xL),

∂z

∂x
(t, 0),

∂z

∂x
(t, xL), w(t, 0), u(t)

)
(8.6h)

t ∈ [0 Nδ].

From the solution of the NMPC problem we extract the current control actions uk = u∗(δ).
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The plant then evolves to the next state zk+1(x) and this is used to compute the next control

action. In this analysis, we assume that the true state of the plant is equal to the prediction

z∗(δ, x) so no state estimator will be necessary. In Section 8.4.1 we will discuss the specifics

of a MHE estimator for LDPE processes. This estimator will be later coupled to the NMPC

controller to provide output feedback.

We use a full discretization approach to solve the PDAE-constrained optimization prob-

lem (8.6). The inputs variables u(t) are held constant at each time step. For the discretiza-

tion of the reactor model, we use an average of 10 finite elements for the reaction zones

and 2 finite elements for the cooling zones. Three collocation points are used. Upon spatial

discretization, the PDAE reactor model translates into a DAE model containing around

9,000-10,000 DAEs in time. If 5 time discretization points are used, the DAE model is

converted into an algebraic model with around 40,000-50,000 equations. We implement the

NLP in AMPL and solve it with IPOPT. The MA57 linear solver is used to factorize the

KKT matrix inside IPOPT. We use exact derivative information from AMPL. Moreover,

we use a shifting strategy to warm-start subsequent NMPC problems and initialize the

NLP solver with a small value of the barrier parameter µ = 1× 10−6. Nevertheless, in this

section we assume that the NMPC problems can be solved instantaneously. In section 8.5

we present advanced step strategies to avoid computational delays.

8.3.2 Case Studies - Tracking NMPC

We first assume that the performance index is a tracking objective. With this, the NMPC

controller seeks to minimize the transition time between the current state to a desired target.

Therefore, we define the least-squares function,

Φk =
∫ Nδ

0

∫ xL

0

[
(γ(t, x)− γ̄(t, x))TQ−1(γ(t, x)− γ̄(t, x))

]
dxdt. (8.7a)

where Q−1 is a diagonal weighting matrix used to penalize deviations from the references

or targets. We will make use of the model variables γ(t, x) to represent the inputs and
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the controlled output variables with corresponding targets γ̄(t, x). The targets are mapped

to a set of output variables that can be measured in the process. In a typical LDPE

process the outputs are usually the temperature profile, the polymer melt index and the

polymer density. Here, we assume that the outlet temperatures of the jackets are not

controlled variables but we impose physical bounds on them (e.g. reasonable temperature

levels for cooling water going back to cooling tower). It is important to emphasize that the

temperature profile is only controlled at discrete positions along the reactor (i.e. where the

thermocouples are present). Nevertheless, having a first-principles model allows to control

or impose constraints on temperatures at unmeasured positions. In addition, we can also

control and/or impose constraints on unmeasured properties such as the polydispersity or

molecular weights. The controls or manipulated variables include all the input variables of

Table 8.1.

To test the performance of the tracking NMPC controller we consider a typical scenario

arising in the operation of LDPE reactors. LDPE tubular reactors undergo periods where

the polymer layer is defouled by means of pressure or thermal shocks [22]. Stabilizing the

reactor under these disturbance cycles is crucial in order to avoid reactor runaway and to

keep the polymer properties at target. To simulate the NMPC cleaning-fouling cycle, we

ramp the heat transfer coefficients for all the reactor zones from their nominal value to

+50% and then back to -20%. Since the controller cannot predict the behavior of the heat

transfer coefficients, they act as exogenous disturbances. The plant response is obtained

by simulating the reactor model using the current control action and the true heat transfer

coefficients. Each time step corresponds to 5 minutes of operation. We use a prediction

horizon of 5 time steps. The closed-loop simulations are run for a hundred time steps. The

objective of the controller in this scenario is to keep the temperature profile as close as

possible to a given reference profile as the reactor fouls and defouls.

In the top graph of Figure 8.14 we present the profiles of the heat transfer profiles for

zones 2 and 3. Note that in the first stage the reactor gets clean so the values of the heat
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Figure 8.14: NMPC controller behavior. Ramping of heat transfer coefficients (top). Con-

troller response for temperature profile (middle) - gray lines are the responses and dark line

is the reference temperature profile. Responses of wall (gray) and jacket (black) tempera-

tures (bottom).

transfer coefficient go up. The reactor then gets fouled and the heat transfer coefficient

values go down. Note also that the reactor zones have different cooling capabilities. In

the middle graph we present the closed-loop response of the temperature profile. The dark

line is the reference profile and the gray lines represent the controller responses. As we can

see, the controller is able to stabilize the system and keep the temperature profile close to

the reference. The impact of the fouling-defouling disturbances can be appreciated in the

bottom graph. Here, we present the dynamic responses for the wall and jacket temperatures

for the first 35 time steps (defouling). The temperature levels raise significantly due to the

decrease of the fouling layer thickness (increasing heat transfer coefficient). In other words,

more heat can be dissipated to the jacket and walls. In addition, note that as the reactor

defouls the wall temperature profile becomes similar in shape to that of the reactor core.
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Figure 8.15: NMPC controller behavior. Closed-loop response of outlet melt-index (top).

Response of reactor overall production (bottom).

In Figure 8.15 we present the reactor responses for the polymer melt index and the reactor

overall production. In the top graph, we can observe that the controller achieves a tight

control of the melt index. The melt index variability is less than 0.1% with respect to the

reference value. Although a proper control of the reactor temperature profile is important

to keep the melt index at target, the controller also makes use of the chain-transfer flow rate

to help with the control. In the bottom graph we present the response for the reactor overall

production. Note that the production increases as the reactor is cleaned. This results from

the increase of the closed-loop initiator flows that keep the temperature profile at target.

On the other hand, when the reactor fouls, the controller needs to drop the initiator flows

and this in turn results in decreased production levels. It is important to emphasize that

the controller objective is to keep the reactor at the desired temperature profile and not

to control the production levels. In other words, the fluctuating production levels are an

implicit consequence of the control actions.

In Figure 8.16 we present the closed-loop responses for some of the controller inputs. In

the top graph we can see the response of the jacket inlet temperatures for zones 2 and 3. Note
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that the controller responses do not follow obvious trends. This implies that there exists a

relatively high degree of nonlinearity and coupling in the system. In particular, the jacket

inlet temperatures have a strong impact on the outlet temperatures of the reaction zones

(where the initiators are totally consumed) and on the temperature profiles of the cooling

zones. In the middle graph we can see that the initiator flows follow a monotonic trend

as we ramp the heat transfer coefficients. The controller decreases the amount of initiator

during the fouling periods and increases it during the defouling periods. This is done in

order to compensate for the fluctuating cooling capacity. Since the reactor temperature

levels are largely determined by the heat of reaction, the initiator flows are used to control

the local conversion levels in each zone. In the bottom graph we appreciate the closed-loop

response of the the side-stream temperatures. The side-stream temperatures tend to have

the strongest impact on the inlet temperatures at each zone. In addition to the initiator

flows, the inlet side-stream temperatures play an important role in shaping the temperature

profile at each zone. However, in this particular scenario, the controller does not make use

of the side-stream temperature of Zone 3. This illustrates that the controller is implicitly

taking into account interactions between zones.

8.3.3 Case Studies - Economics-Oriented NMPC

One would expect that the incorporation of a centralized NMPC controller would result

in increased robustness and performance since it can better handle the multivariable inter-

actions along the LDPE reactor. However, it is often difficult to appreciate the economic

benefits of incorporating such a sophisticated controller. In principle, we could appreciate

these benefits more easily if we would use a real-time optimization (RTO) layer in order to

compute steady-state targets that optimize the process profitability and then use NMPC

controller to obtain fast transitions between targets. However, this approach is difficult to

apply to LDPE processes since they are seldom at steady-state due to frequent and persis-

tent disturbances (e.g. fouling). In this work, we propose the incorporation of an economic
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Figure 8.16: NMPC controller behavior. Jacket inlet temperatures (top). Initiator flows

(middle). Side-streams temperatures (bottom).
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objective to the NMPC controller. This economics-oriented controller can be seen as an

all-at-once RTO-NMPC strategy (D-RTO) that directly optimizes the process performance.

Such an strategy can account for the dynamic disturbances that affect the process profitabil-

ity and can exploit more efficiently the degrees of freedom available in distributed LDPE

reactors [118].

For the design of the D-RTO or economics-oriented NMPC controller, we will incorporate

a measure of the process profitability on the controller objective. In this case, we have

decided to incorporate the accumulated production rate. This is justified by the fact that

in high-throughput LDPE processes the operating costs are largely affected by production

losses associated with fouling. The objective function of the controller will take the following

form,

Φk = −αe

∫ Nδ

0
Production(t)dt

+αt

∫ Nδ

0

∫ xL

0

[
(γ(t, x)− γ̄(t, x))TQ−1(γ(t, x)− γ̄(t, x)))

]
dxdt

Here, the controller tries to minimize the transition time from the current state to the tar-

gets and simultaneously maximizes the reactor production. We have found that a purely

economic objective leads to ill-posed optimization formulations due to the large number of

degrees of freedom encountered in LDPE reactors and due to the distributed nature of

these systems. With a purely economic objective we cannot guarantee the uniqueness of

the solution (e.g. SSOC does not hold) and this also makes the NMPC problems extremely

difficult to solve. These observations agree with those of Huesman and coworkers [61] and

with those of Skogestad in the context of steady-state RTO [113]. In this work, we add

a tracking term to regularize the problem and thus obtain smoother solutions. Notice the

addition of positive weighting factors αt and αe, which are controller design parameters.

In the context of LDPE processes, the tuning factor αt reflects how much is the controller

allowed to deviate from the reference temperature profile in order to maximize the produc-

tion rate. Note also that the production term is a highly complex nonlinear mapping of the
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model states. Here, we emphasize on the importance of using exact second-order derivative

information to handle these types of objectives.

We have tested the D-RTO controller using the same fouling-defouling scenario analyzed

in the previous section. In Figure 8.17 we compare the performance of the NMPC (tracking)

and the D-RTO (economic) controllers. In the top graph we see that the tracking controller

keeps the reactor temperature profile close to the given reference. On the other hand, in the

middle graph we see that D-RTO controller responses tend to deviate from the reference.

In the bottom graph we see that the adjustment of the temperature profile results in a

direct increase on the reactor production levels of more than 10% during both the fouling

and the defouling stages. These results are quite promising since, as we have mentioned, a

slight increase in production in high-throughput LDPE processes can represent millions of

dollars in annual savings. The D-RTO controller recognizes that the given reference profile

is not the optimum profile in terms of reactor productivity and it tends to correct it. Since

the controller also manipulates the chain-transfer agent flow rate, these changes can be

made without having to sacrifice polymer quality (e.g. melt index). Note that the D-RTO

controller increases the peak temperature levels in the third and fourth zone and it tends to

decrease their corresponding inlet temperatures. On the other hand, note that the controller

leaves the temperature profile of the first two zones almost unchanged. This implies that

production bottlenecks are mostly associated with the third and fourth zones. To illustrate

this in more detail, in Figure 8.17 we present the relative production improvements for the

first zones. Note that the improvements are most notable downstream of the reactor.

In general, we can conclude that the main benefit of the D-RTO controller is the ability

to find better strategies to distribute the polymer production across the multiple zones.

Since this in turn depends on the time-varying fouling levels at each zone, the controller

is an efficient alternative to manage fouling issues. Nevertheless, from the bottom graph

of Figure 8.17 we can also see that the D-RTO controller still needs to give away some

production during the fouling period. This implies that the reactor performance is still
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affected by fouling.

8.4 Moving Horizon Estimation

As we have seen, there exist multiple sources of time-varying uncertainty arising in LDPE

processes that are difficult to predict through the reactor model. In particular, we have

seen that the fouling onset is difficult to predict through mechanistic models. Neverthe-

less, the availability of a first-principles model allows to map the sources of uncertainty to

parameters with physical meaning that can be estimated on-line. A second issue arising

in industrial LDPE units is that the available on-line measurement information is rather

limited. Consequently, it is difficult to analyze and understand internal phenomena taking

place at the reactor core. In this section, we couple the first-principles dynamic model to

a MHE state estimation strategy to overcome these limitations. The estimated states and

time-varying parameters will be later used to provide output feedback through the NMPC

controller.

8.4.1 MHE Problem Formulation

Consider the scenario in which the LDPE process is currently located at sampling time

tk and we have a past measurement history {ηk, ηk−1, . . . , ηk−N} distributed over a time

horizon containing N sampling times of equal length δ = tk − tk−1. Using this information,

we seek to infer the current state of the reactor zk(x), wk(x), yk(x) and the parameters pk

through the rigorous model. We assume that the model structure is correct and that all the

uncertainty related to the real process can be encapsulated in the model parameters p(t),

in the initial conditions z0(x) and in the measurement errors. Following this reasoning,

an estimate of state of the process can be computed through the solution of an estimation

problem of the form,
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min

p(t), z0(x), u(t) (z0(x)− z̄0(x))TΠ0
−1(z0(x)− z̄0(x))

+
N∑

k=1

Nm∑
i=1

(η(i)
k−N − γ(jδ, xi))TR−1(η(i)

k−N − γ(jδ, xi)) (8.9a)

s.t.
∂z

∂t
+ ν(t, x)

∂z

∂x
+ κ(t, x)

∂2z

∂x2
= fz(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.9b)

∂w

∂x
= fw(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.9c)

0 = fy(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.9d)
γ(t, x) = χ(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.9e)

0 ≥ g(z(t, x), w(t, x), y(t, x), p(t), u(t)) (8.9f)
z(0, x) = z0(x) (8.9g)

0 = ϕ

(
z(t, 0), z(t, xL),

∂z

∂x
(t, 0),

∂z

∂x
(t, xL), w(t, 0), u(t)

)
(8.9h)

t ∈ [0 Nδ].

Note that the process measurements are only defined at discrete points in time jδ and

space xi. Symbol η(i)
k denotes the i-th spatial measurement in vector ηk. The total number

of measurements in space is denoted by Nm. The measurement vector contains both output

and input measurements with error covariance R ∈ <nγ×nγ . The MHE problem contains a

large number of degrees of freedom including the parameters, the initial conditions for the

dynamic states and the inputs. Variable z̄0(x) denotes the a priori value of the initial state

with covariance Π0 ∈ <nz×nz . The first term in the objective function is the arrival cost,

which summarizes past measurement information before sampling time tk−N .

From the solution of the optimization problem, we extract the estimate of the current state

of the process as z̃k(x) ← z∗(δN, x), w̃k(x) ← w∗(δN, x), ỹk(x) ← y∗(δN, x), the current

parameters p̃k ← p∗(δN) and the reconciled inputs. At the next sampling time tk+1, we

drop the last measurement and incorporate the new one to obtain the new measurement

history {ηk+1, ηk, . . . , ηk+1−N}. Accordingly, we update the a priori estimate of the initial

state using the previous solution as z̄0(x) ← z∗(δ, x). In some cases, it is also necessary

to update the covariance matrix Π0 using the covariance of the predicted state z∗(δ, x) to

Chapter 8. Industrial Low-Density Polyethylene Case Study

158



8.4 Moving Horizon Estimation

0 5 10 15 20 25 30 35 40 45 50
0.8

1

1.2

1.4

1.6

U
in

ne
r  

Time Step 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

Reactor Length 

C
or

e 
T

em
pe

ra
tu

re
 

t
1

t
25

t
25

t
1

Measurement
↓

0 5 10 15 20 25 30 35 40 45 50
0.9

0.95

1

1.05

In
iti

at
or

 F
lo

w
 

Time Step 

Zone 1
Zone 2
Zone 3

Figure 8.19: Closed-loop response of reactor core temperature profile and position of ther-

mocouples.

account for poor estimates of the initial conditions. To solve the MHE problem, we use the

same model implementation and solution approach of the NMPC problem. We use IPOPT

to solve the NLPs using exact derivative information coming from AMPL. In addition, we

extract the covariance matrix ΠN from problem (8.9) for the current state estimates z̃k(x)

using the reduced Hessian extraction capabilities described in Chapters 3 and 6.

8.4.2 Case Studies

We analyze the performance of the MHE estimator in the closed-loop fouling-defouling

scenario discussed in the previous section. We obtain the measurement information ηk from

the closed-loop NMPC simulation. In Figure 8.19, we present the closed-loop response of

the temperature profile during the first defouling cycle (first 25 time steps). In addition, we

indicate the specific location of the thermocouples measuring the reactor core temperature.

In Figure 8.20 we illustrate the dynamic response of the jacket and we present the position

of the available jacket thermocouples.
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Figure 8.20: Closed-loop response of jacket cooling water and position of thermocouples.

Nominal Case

The NMPC simulation results provide the dynamic profiles for all the reactor states that

we use as the true states to test the estimator. To analyze the nominal performance of

the estimator, we consider the case in which we have a wrong a priori guess of the wall

and jacket profiles and heat transfer coefficients at time t0. In addition, we assume that

no measurement noise is present. We use the initial guess and the available measurement

information to reconstruct the dynamic profiles for the heat transfer coefficients and all the

state profiles of the process.

We consider two scenarios. In scenario 1, we generate the initial guess for the wall and

jacket temperature profiles by perturbing the true profiles by -10%. In absolute values,

this corresponds to a perturbation of approximately -20oC to a reference value of 40oC (i.e.

our guess of the profile is underestimated 20oC). In scenario 2, we perturb the initial guess

of the wall and jacket temperature profile by a Gaussian zero-mean disturbance with a

standard deviation of 20oC. In both scenarios, we also perturb the initial guess of the heat

transfer coefficients by +50 %. The results are presented in Figures 8.21 and 8.22. In the

top graph of Figure 8.21 we can observe that the estimator is able to converge to the true

value of the heat transfer coefficients. In the middle graph, note that the initial guess of

the wall temperature profile in scenario 1 is shifted and the estimator is able to converge

Chapter 8. Industrial Low-Density Polyethylene Case Study

160



8.4 Moving Horizon Estimation

0 5 10 15 20 25 30 35 40 45 50
1

1.5

2

U
in

ne
r

1

Time Step

MHE
True

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

t
1

t
5

t
25

W
al

l T
em

pe
ra

tu
re

Length

True
MHE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

t
1

t
5

t
25

W
al

l T
em

pe
ra

tu
re

Length

True
MHE

Figure 8.21: Convergence properties of MHE estimator for perturbations on initial guess.

Convergence to heat transfer coefficient of first reaction zones in scenario 1 (top). Conver-

gence to wall temperature profile in scenario 1 (middle) and scenario 2 (bottom).

to the true wall temperature profile at sampling time t5. In the bottom graph, we note the

large disturbances added to the random initial guess of the wall profile in scenario 2. The

estimator is also able to reconstruct the true wall temperature profile at around time t5.

In the top graph of Figure 8.22 we demonstrate that the estimator also converges to the

true jacket temperature profile. In the middle graph, we can observe that the available

temperature measurements provide enough information to reconstruct the concentration

of radicals across the reactor at the first sampling time t1. Here, it is also possible to

identify the addition of initiator flow rates at the beginning of each reaction zone and the

fast consumption. In the bottom graph of Figure 8.22 we see that the temperature profile
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Figure 8.22: Convergence properties of MHE estimator for perturbations on initial guess.

Convergence to jacket temperature profile in scenario 1 (top). Convergence to radicals

concentration profile at time step t1 (middle). Convergence to polymer melt index at the

reactor outlet (bottom).

provides enough information to infer quickly the polymer melt index at reactor outlet.

These results are quite surprising as in many processes temperature measurements are not

sufficient to infer all the model states. However, as we have seen in the off-line parameter

estimation case study, it seems that the shape of the temperature profiles arising in LDPE

reactors presents a significant degree of excitation that tends to make the measurement data

highly informative.

The solution of all the MHE problems considered satisfy second order conditions (SSOC)
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indicating that the process is locally observable using the available measurement infor-

mation. To quantify the observability properties of the reactor, we perform a numerical

analysis of the covariance matrix of the estimated wall temperature profile (ΠN ) for differ-

ent values of the estimation horizon N . The results are presented in Figure 8.23. In the

top graph, we plot the diagonal elements of the covariance matrix corresponding to each

wall temperature along the reactor. Note that the covariance levels decay quickly as we

add measurements into the horizon. In addition, the covariance profile becomes similar in

shape to that of the temperature profile (e.g. where the measurements are present). It

is also clear that the wall temperature can be inferred more reliably close to the reactor

inlet than downstream the reactor. In the bottom graph, we plot the maximum eigenvalue

of the covariance matrix λmax(ΠN ) as a function of the estimation horizon. We compare

three cases. The first case involves the estimator using the full measurement information

available (core and jacket temperatures, inputs and conversion). The profile is presented

as a solid gray line. Note that the maximum eigenvalue decays rather quickly and reaches

the steady-state covariance Π∞ as the estimation horizon length is increased. A few time

steps seem to be sufficient to obtain reliable estimates of the wall profile. In the second

case, we eliminate the conversion measurement from the objective function (dashed black

line). Note that the covariance of the wall profile is not affected by this modification. This

implies that the conversion measurement is redundant (conversion can be inferred directly

from the temperature profile). In the third case, we eliminate one third of the reactor core

measurements distributed along the reactor. Note that this change strongly affects the co-

variance levels of the estimated states. This illustrates the importance of the temperature

profile on the observability properties of the reactor.

Output Noise Filtering

We demonstrate the performance of the estimator for cases in which random Gaussian

noise is added to the temperature measurements. In the first scenario, we add noise with a
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Figure 8.23: Effect of estimation horizon length on convergence of estimator. Covariance

of wall temperature profiles for different horizon lengths N (top). Decay of maximum

eigenvalue of covariance matrix for different measurement scenarios (bottom).
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standard deviation σ = ±3oC to each thermocouple measurement. This is a fairly standard

noise level encountered in industrial reactors. In the second scenario we increase the level

of noise to ±5oC. In both scenarios, the corresponding diagonal elements of the covariance

matrix R are set to 1
σ2 . The results are presented in Figure 8.24. As can be seen, the

estimator is able to reject the measurement noise and reconstruct the profile of the heat

transfer coefficients.

Input Noise Filtering

As we have seen in EVM formulations for parameter estimation, input measurement noise

leads to biased state estimates. To demonstrate this, we consider the scenario in which the

inlet temperature of the cooling water of all the zones is contaminated with Gaussian noise

with σ = ±3oC. The results are presented in Figure 8.25. In the top graph, we illustrate the

inlet cooling water temperature corrupted with noise. In the middle graph, we can see that

the input noise disrupts the convergence of the estimator to the true jacket temperature

profile at time t50 (top graph). The estimate is biased. In the bottom graph, we observe

that input noise also degrades the convergence of the estimator to the true heat transfer

coefficients.

In order to filter out the input noise, the values of the input variables are reconciled

simultaneously in the MHE formulation. For this EVM-MHE formulation, we define all

these inputs as degrees of freedom in the NLP. In addition, we incorporate the correspond-

ing least-squares terms to the objective function and modify the corresponding diagonal

elements of the covariance matrix R. As in the previous standard MHE case study, we

corrupt the measurements of the inlet cooling water temperatures with Gaussian noise with

σ = ±3oC. In the top graph of Figure 8.26, we can see that the estimator is able to filter out

the input noise and infer the true input. In the middle graph, we see the resulting smoother

convergence of the heat transfer coefficients to the true value, compared to those observed

in Figure 8.25. In the bottom graph, we see the bias elimination on the jacket temperature
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Figure 8.24: Effect of output noise on performance of estimator. Output noise on reactor

core temperature with σ = ±3o C and convergence to heat transfer coefficients (top).

Output noise with σ = ±5o C and corresponding heat transfer coefficients (bottom).

Chapter 8. Industrial Low-Density Polyethylene Case Study

166



8.4 Moving Horizon Estimation

0 5 10 15 20 25 30 35 40 45 50

1

1.5

2

2.5

In
le

t J
ac

ke
t T

em
pe

ra
tu

re

Time Step

True
True + Noise

0 5 10 15 20 25 30 35 40 45 50
1

1.5

2

U
in

ne
r

1

Time Step

MHE
True

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

t
1

t
50

Ja
ck

et
 T

em
pe

ra
tu

re

Length

True
MHE

Figure 8.25: Effect of unrejected input noise on performance of estimator. True and noisy

jacket inlet temperatures for Zone 1 (top). Estimated heat transfer coefficient for Zone 1

(middle). Biased estimates of wall temperature profile (bottom).
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Figure 8.26: Effect of rejected input noise on performance of estimator. True, reconciled

and noisy jacket inlet temperatures for Zone 1 (top). Estimated heat transfer coefficient for

Zone 1 (middle). Unbiased estimates of wall temperature profile (bottom).
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profile through the EVM-MHE formulation.

8.5 NMPC-MHE Coupling

In the previous sections we have evaluated the performance of NMPC and MHE strategies

for LDPE processes and we have discussed their potential benefits. In this section, we couple

these strategies and analyze their performance in an output feedback scenario. In addition,

we discuss computational scale-up issues, and use advanced-step strategies to overcome

computational delays.

8.5.1 Case Studies

We simulate an output feedback scenario in which the reactor is fouled and defouled over

time. Again, this is done by ramping the reactor heat-transfer coefficients (HTCs). Since

the LDPE reactor model cannot predict the fouling disturbance, we use the MHE estimator

to estimate the HTCs pk and the unmeasured model states z̃k(x) (e.g. wall temperature

profile) at each time step. The objective of the NMPC controller is to use the estimated

reactor state z̃k(x) to drive the reactor outputs to the desired target by computing the

optimal control action uk = h(z̃k(x)). In this simulated scenario, we generate the true plant

response zk(x) from the model with the true HTCs. Since the MHE estimator starts with

wrong guesses of the state and the parameters, and since we add Gaussian measurement

noise, it will introduce an estimation error that acts as a disturbance to the plant. In

addition, note that since the fouling phenomenon cannot be predicted, the estimator can

only converge to the true value of the HTCs one step behind. Once the HTC disturbance

vanishes, the estimator converges to the true values and the NMPC controller recovers its

nominal stability properties.

In the top graph of Figure 8.27 we compare the predicted temperature profile of the
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NMPC controller at time step 25 and the corresponding profile corrupted with σ = 3%

Gaussian noise. In the middle graph we see that the MHE estimation converges to the true

profile of wall in less than 10 time steps despite of the noise and the wrong initial guess. In

the bottom graph we see the effect of noise on the control actions by the NMPC controller.

In the top graph of Figure 8.28 we illustrate the convergence of the MHE estimator to the

jacket water temperature at a particular point along the reactor. In the middle graph we

illustrate the convergence of wall temperature at the same axial position. In the bottom

graph we can see that the NMPC controller is able to stabilize the system despite of the

multiple disturbances and is able to keep the reactor temperature profile close to the target.

It is important to emphasize that the strong observability properties of the LDPE reactor

result in good robustness and stability properties of the NMPC controller. In particular,

note that the number and location of the temperature measurements available along the

reactor are particularly important for this.

8.5.2 Computational Issues and Advanced-Step Strategies

In this section, we discuss computational issues associated with the proposed MHE and

NMPC strategies for LDPE reactors. In all our computational studies, we used the full

discretization approach together with IPOPT to solve both NLPs. We initialized tested the

MA27 linear solver to factorize the KKT matrix. We found similar results to those discussed

in the off-line parameter estimation problem. MA27 is in general robust and can handle the

poor scaling of the KKT matrix resulting from the LDPE model quite efficiently. However,

the minimum degree ordering strategy used in MA27 tends to introduce large amounts

of fill-in and the NMPC and MHE problems become expensive to solve even with short

time horizons. Motivated by this, we performed testing with the MA57 linear solver. We

found that MA57 is in general is much faster than MA27 and can handle fill-in issues

more efficiently. Nevertheless, we have also found that choosing an appropriate preordering

strategy in MA57 is critical to obtain fast factorizations [52].
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Figure 8.27: Performance of coupled NMPC-MHE for output feedback. Predicted temper-

ature profile at time step 25 and corresponding profile corrupted with Gaussian noise (top).

Convergence of MHE estimator to true wall profile (middle). Jacket water inlet temperature

of Zone 2 computed by NMPC controller (bottom).
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Figure 8.28: Performance of coupled NMPC-MHE for output feedback. Convergence of

MHE estimator to jacket temperature at a particular location of the reactor (top). Con-

vergence of MHE estimator to wall temperature (middle). Closed-loop responses of NMPC

for temperature profile (bottom).
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AMDFigure 8.29: Solution times for NMPC (top) and MHE problems (bottom) with horizons of

N = 10 time steps.

In order to motivate the discussion, we present results on the total wall-clock time required

to solve the tracking NMPC and the MHE problems in the output feedback case study

of the previous section. All calculations were obtained using a quad-core Intel processor

running Linux at 2.4 GHz. We use shifting strategies to warm-start subsequent NMPC

and MHE problems and we set the barrier parameter of IPOPT to µ = 1 × 10−6. The

solution times also include some overhead coming from I/O communication tasks arising in

the implementation and from AMPL, which requires some time to generate the derivative

information before calling the NLP solver. The prediction and estimation horizons N were

set to 10 time steps (20 minutes) and sampling times of 2 minutes were used. The NMPC

problem consists of an NLP with 80,950 constraints and 370 degrees of freedom. The MHE

problem consists of an NLP with 80,300 constraints and 648 degrees of freedom. As can

be seen in the top graph of Figure 8.29, the overall solution time for the NMPC problem

is around 60 seconds. The NLP solver requires 3-4 iterations to converge the problems. In

the bottom graph we present total solution times for the MHE estimator. In this case, the

estimator is initialized in batch mode (accumulate measurements until an estimator horizon
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Figure 8.30: Scale-up results for solution times of NMPC problem with different horizon

lengths.
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Figure 8.31: Comparison of solution times for NMPC problem with tracking and economic

objectives.

of N time steps is filled). Once the estimation horizon is complete, IPOPT takes around

70 seconds to solve the problem (3-4 iterations are required).

In Figure 8.30, we present scale-up results of the solution time for the NMPC problem

with increasing horizon length. We compare the impact of an approximate minimum degree

ordering (AMD) strategy and nested dissection strategy reordering on the solution time of

the NMPC problem (without refinement or overhead). Note that the multi-level nested

dissection strategy is more efficient here and achieves a linear scale up. Using this strategy,

a NMPC problem with N = 30 time steps resulting in an NLP with 242,850 constraints and

1,110 degrees of freedom is solved in around 2 minutes. The AMD strategy shows quadratic

scale-up and the largest problem requires 4 minutes. This huge difference can be attributed
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Figure 8.32: Comparison of solution times for MHE and EVM-MHE problems.

to the fact that the nested dissection algorithm can identify coarse-grained structures present

in the NMPC problem more easily (LDPE multi-zone model, finite element structure, etc.),

while AMD tends to focus on fine-grained structures. Similar results have been found for

the MHE problem. An MHE problem with an estimation horizon of 30 time steps results in

an NLP with 244260 constraints and 1878 degrees of freedom. This problem can be solved

with a nested dissection strategy in around 2.5 minutes.

In Figure 8.31 we illustrate the solution times for NMPC problems with tracking and

economic objectives. We can see that if exact derivative information is used to solve the

problems, the solution times (e.g. factorization time and number of iterations) are not

altered by changes in the objective function. In Figure 8.32 we compare the solution times

of MHE and EVM-MHE problems in a particular case study. In general, we have found that

the use of exact derivative information allows to solve both problems in the same number of

iterations [99]. However, we have also found that if the default AMD preordering strategy

of MA57 is used, the factorization of the KKT matrix arising from the EVM problems

becomes extremely expensive [128]. Nevertheless, in Figure 8.32 we can see that, when a

nested dissection strategy is used, the factorizations and solution times of both the MHE

and the EVM-MHE problems are very similar.
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Advanced-Step Strategies

From the previous results we can conclude that a full-discretization approach coupled with

an sparsity-exploiting NLP solver results in a highly efficient computational strategy to

solve large-scale NMPC and MHE problems. In particular, we have demonstrated that this

approach scales well with problem size and number of degrees of freedom. Here we emphasize

that the development of new and powerful linear solvers plays a crucial role in achieving

this favorable complexity. Nevertheless, from the previous results it also becomes clear that

even if we have a fast strategy to solve the problems, the solution time will always become a

bottleneck as we consider larger and larger applications. For instance, in the context of the

output feedback LDPE case study, the time required to solve the MHE problem to obtain

the state estimate plus the time required to solve the NMPC problem to obtain the control

actions is more than 2 minutes. This solution time is in fact longer than the assumed

sampling time. This problem becomes more obvious as we consider longer time horizons.

Here, we demonstrate that these limitations can be avoided with advanced-step strategies.

We demonstrate the performance of a coupled advanced-step NMPC-MHE strategy on

the same output feedback scenario presented in the previous section. Again, a prediction

horizon N of 10 time steps (20 minutes) and sampling times of 2 minutes have been used.

Here, we demonstrate that the approximation errors introduced by NLP sensitivity are

negligible and do not destabilize the controller. In this scenario, we recognize that since the

plant response differs from that of the NMPC controller prediction and we introduce noise,

the asMHE estimator will see a difference between the measured and the predicted outputs

and will correct on-line using NLP sensitivity. We have found that the approximation errors

are negligible and the asMHE estimator has almost identical convergence properties to that

of the ideal MHE estimator. In the top graph of Figure 8.33, we can see that the asMHE

estimates are identical to those of the ideal or optimal MHE estimator. Using the estimated

states and HTCs, the asNMPC controller then corrects the predicted state on-line. In the

middle graph of Figure 8.33 we present the closed-loop response of one of the jacket water
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inlet temperatures for the asNMPC controller and of its ideal NMPC counterpart. As can

be seen, both control actions are identical. In the bottom graph of this figure we can see

that the asNMPC controller is able to stabilize the temperature profile around the target.

The sensitivity calculations for both the NMPC and MHE problems require less that 0.1

seconds.

The total background times required to converge the predicted MHE and NMPC problems

and update the KKT matrices are very similar to those presented in Figure 8.29. However,

we have found that the NLP sensitivity approximations for the Lagrange multipliers tend

to deviate from the optimal ones. This is mainly associated with the ill-conditioning of the

LDPE model that generates extremely large values for some of the multipliers (e.g. 1×107) .

When the NLP sensitivity approximations are used to warm-start the background problems,

the NLP solver requires many more iterations to converge them. In order to avoid this, we

perform an on-line refinement of the multipliers through fixed-point iterations. We have

found that around 5-10 fixed-point suffice to fully converge the NMPC and MHE problems

on-line. The time required by 10 fixed-point iterations is around 1 second. These results

are interesting because this implies that the proposed advanced-step strategies can also be

seen as highly effective warm-start strategies. The predicted problems provide the fixed

KKT matrices and the problems can be solved on-line to optimality using fast fixed point

iterations. In addition, note that the advanced-step strategy allows to decouple the solution

of the background MHE and NMPC problems. In the case study analyzed, this allows

to keep the sampling time to 2 minutes. With this, we can conclude that the proposed

advanced-step NMPC-MHE strategies allow to consider implementations with long time

horizons, reasonable sampling times and negligible feedback delays.
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Figure 8.33: Effect of NLP sensitivity errors on performance of advanced-step MHE and

NMPC strategies in LDPE case study.
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8.6 Concluding Remarks

We have discussed operational problems arising in industrial low-density polyethylene (LDPE)

tubular reactors. In particular, we have seen that persistent dynamic disturbances such as

fouling strongly affect the profitability of the process. In addition, we have seen that the

distributed nature of LDPE reactors gives rise to complicated operating policies. As a

consequence, there exists a strong motivation to incorporate sophisticated first-principles

models to dictate the operation of these complex processes systematically.

We present results on a large-scale parameter estimation study in which we tune a LDPE

reactor model using industrial measurement data. We propose an simultaneous (all-at-once)

strategy for the solution of parameter estimation problems incorporating a detailed first-

principles DAE model and multiple data sets. The estimated parameters result in significant

improvements on the model predictions. In addition, a systematic estimation analysis allows

to determine which parameters can be estimated reliably and reveals important structural

model deficiencies. Finally, we demonstrate that a Schur decomposition strategy is effective

in solving very large-scale estimation problems with multiple data sets.

We have incorporated a dynamic version of the reactor model in a NMPC strategy.

Using a fouling-defouling scenario, we demonstrate that a tracking NMPC controller is

able to stabilize the reactor in the face of persistent fouling disturbances while keeping the

polymer properties at target. We also demonstrate that if an economic objective function

is added, the NMPC controller can exploit the multiple degrees of freedom of the process

to simultaneously optimize the process profitability. In particular, we have found that an

economics-oriented controller can improve the production rate by more than 10%.

We presented a MHE strategy to infer time-varying fouling behavior and to provide esti-

mates of the plant states to the NMPC controller. A numerical analysis of the covariance

matrix of the wall temperature reveals that the multiple temperature measurements avail-

able in the reactor make the system strongly observable. The measurements help the MHE
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estimator to converge quickly to the true model states even in the face of poor initial guesses.

In addition, we demonstrate that the MHE estimator can reject both input and output noise

effectively. We have coupled the MHE estimator to the NMPC controller to provide output

feedback to the LDPE process. We have found that the fast convergence properties of the

MHE estimator aid the NMPC controller in stabilizing the process effectively.

We have demonstrated that a full-discretization approach coupled to a full-space interior

point solver results in an fast strategy to solve both the NMPC and MHE problems. In ad-

dition, we have demonstrated that this approach scales linearly and, at most quadratically,

with problem size. We have seen that the use of an efficient linear solver is crucial in achiev-

ing this. Finally, we implement advanced-step NMPC-MHE output feedback strategy. We

demonstrate that a highly sophisticated dynamic model can be accommodated on-line to

provide nearly instantaneous feedback to the LDPE process with negligible approximation

errors.
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Conclusions

The incorporation of first-principles dynamic models in process operations provides an un-

precedented potential to integrate the decision-making hierarchy. This integration can lead

to more systematic and proactive operations and to significant improvements in profitability.

However, the use of first-principles models in on-line operations also presents many compu-

tational challenges. The objective of this dissertation has been to propose computational

strategies aiming at overcoming some of these challenges. In this chapter, we summarize

our contributions and present suggestions for future work.

9.1 Thesis Summary and Contributions

A brief comparison of different approaches for DAE-constrained optimization presented in

Chapter 2 demonstrates that the full-discretization approach presents a highly favorable

computational complexity. This is mainly due to the fact that it avoids expensive and

repetitive integrations of the DAE model and it allows to exploit the sparsity of the DAE

model directly in the NLP formulation.

In Chapter 3 we have seen that with advances in interior-point NLP algorithms and

sparse linear algebra solvers, the potential of the full discretization approach is likely to

keep expanding in upcoming years. Nevertheless, as larger applications are considered, we

have seen this approach can be hindered by long solution times and computer memory

bottlenecks. The effect of the solution time is particularly relevant in on-line operations

where time-critical solutions are needed. In addition, we have seen that the analysis of
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solutions in specific applications such as parameter and state estimation and optimal control

can become cumbersome when general NLP solvers are used. To overcome these limitations

we have presented the following contributions:

· The proposal of a direct strategy to verify the satisfaction of sufficient second-order

conditions (SSOC) through the inertia of the Karush-Kuhn-Tucker matrix arising in

full-space interior-point solvers.

· The derivation of strategies to reuse the factorization of the KKT matrix at the

solution to extract reduced Hessian information through inexpensive backsolves.

· The derivation of diverse NLP sensitivity strategies to obtain fast approximate solu-

tions for large-scale parametric NLPs.

This basic set of computational tools has enabled advances in optimization-based tasks

arising in the context of model-based operations. The main contributions are:

· Parameter Estimation - Chapter 4

· The derivation of strategies to extract large-scale parameter covariance informa-

tion from the KKT matrix and the proposal of formulating multi-set parameter

estimation problems as generalized multi-scenario NLPs.

· Nonlinear Model Predictive Control - Chapter 5

· The proposal, analysis and discussion of the advanced-step NMPC controller and

the derivation of sufficient stability conditions.

· Moving Horizon Estimation - Chapter 6

· The proposal, analysis and discussion of the advanced-step MHE estimator. The

analysis of the optimality conditions of MHE problems to establish connections

with recursive Kalman-like estimators and to derive strategies to extract state

covariance estimation directly from the KKT matrix.
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· NMPC-Coupling - Chapter 7

· Derivation of strategies for synchronization of advanced-step NMPC and MHE.

These computational strategies have been used to derive a model-based operations frame-

work for industrial low-density-polyethylene (LDPE) reactors. Such a framework has been

lacking due to the computational complexity of the associated LDPE tubular reactor mod-

els. In the context of this application, some of the accomplishments presented in Chapter

8 are:

· Proposal of an all-at-once solution strategy for parameter estimation problems. Re-

finement of parameters using industrial measurement data and systematic inference

analysis.

· Design and implementation of NMPC controller and MHE estimator based on dis-

tributed LDPE reactor model.

· Computational analysis of scalability of full-discretization approach.

The publications resulting from this dissertation are [129, 127, 133, 128, 130, 131, 126,

132, 125].

9.2 Recommendations for Future Work

Challenging industrial applications like the LDPE tubular reactor process have motivated

most of the developments of this dissertation. In addition, these applications have helped us

to identify many potential areas of improvement. Some recommendations for future work

are the following:
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Interior-Point NLP Solvers

· We have seen that the factorization of the KKT matrix is the most expensive step

in NLP solvers and limits the solution time. This is particularly relevant in on-line

applications such as NMPC and MHE. Preliminary results on the use of different

preordering strategies for direct linear solvers are encouraging. We believe that a

more detailed analysis of these strategies is essential in order to solve larger problems

where non-intuitive structures tend to appear. In particular, preordering strategies

can be generalized to identify coarse structures that can be exploited automatically

by the linear solver in shared-memory machines. The potential of this approach could

be relevant and can be aided with advances in multi-core technology.

· In many of the NLPs arising in this dissertation we have seen that the inertia correction

strategy can take several factorizations to compute the search step. This becomes

expensive in large-scale problems. More efficient inertia correction strategies could

be considered to make the solver faster. In particular, it could be helpful to stop

the linear solver as soon as the wrong inertia is detected. Another potential strategy

could be to use a trust-region framework to exploit directions of negative curvature

more efficiently. Parameter estimation problems could be greatly benefited from this.

· It is still necessary to develop a more general post-optimal analysis framework for

IPOPT. In particular, the framework should targeted towards warm-starting and

solving parametric NLPs. Such a framework could be useful in applications where

IPOPT is used to solve NLP subproblems like in MINLP algorithms.

NMPC and MHE

· There exist multiple opportunities to expand the application scope of NMPC. Through-

out this dissertation we have argued that the full-discretization approach provides fast

solutions to large-scale problems. This is mainly due to the fact that the DAE model
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does not need to be solved completely at each iteration. On the other hand, this ad-

vantage becomes a disadvantage from a robustness point of view. For instance, Hong

and coworkers have noted that the simultaneous approach is more prone to numeri-

cal ill-conditioning and requires of globalization strategies more often to converge the

problem [60]. This is due to the fact that the search step simultaneously optimizes and

tries to converge the discretized DAE model which is, in many cases, a highly nonlin-

ear set of equations. They have observed that the robustness of this approach can be

significantly improved if the discretized DAE model is converged at each iteration (i.e.

as in a feasible-path NLP solver). This is in fact one of the main reasons why single

and multiple-shooting approaches tend to be more robust and also tend to take full

Newton steps more often. On the other hand, this comes at the expense of increased

computational times and potential infeasibility issues. Consequently, it is clear that

there exists a trade-off between robustness and solution time. We believe that the

exploration of hybrid DAE strategies could be helpful in solving larger problems not

only faster but also more reliably.

· In previous work we have reported a strategy that allows to extend the solution of

the background NMPC problems over multiple sampling times [131]. This can be

done by reusing the KKT matrix to provide fast approximate feedback at multiple

sampling times. These multi-step strategies allow the NLP solver to take more time

to converge the problem. Consequently, they can handle very large models and/or

strong disturbances. Although these strategies have shown to be efficient in practice,

their stability properties have not been explored. In particular, there exists the open

question of how much benefit can we obtain by using the multiple-step strategy as

opposed to simply extend the sampling time. We believe that a rigorous stability

analysis of this strategy can be helpful in obtaining more insight.

· Robust NMPC is an important area of research that can be benefited from the com-

putational strategies proposed in this work. In particular, multi-scenario formulations
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can handle large uncertainty spaces efficiently since they can be parallelized quite eas-

ily. However, stability results are lacking for this approach and need to be explored.

· The stability properties of the proposed advanced-step estimator have not been estab-

lished so far and it is an important research topic. Recently, Alessandri and coworkers

have derived stability conditions for MHE estimators in the face of bounded distur-

bances and approximation errors [3]. Since the advanced-step MHE strategy provides

a natural framework to obtain rigorous performance bounds based on the uncertainty

description, we believe that these stability results can be adapted to the specifics of

the proposed estimator.

Model-Based Operations for LDPE Reactors

· The NMPC controller needs to be tested on more general dynamic scenarios. For

instance, grade transitions are challenging in LDPE reactors because the entire tem-

perature profile needs to be changed. In addition, the recycle system has not been

modelled in this study and this has a strong impact on the dynamics of grade transi-

tions.

· More general objective functions need to be considered in the controller. In particular,

energy costs are relevant in LDPE processes. We also believe that the use of an

economics-oriented controller can help to identify design bottlenecks and to guide

retrofitting tasks.

· The fouling problem has been treated so far as an uncertain disturbance. However,

the fouling rate can also be manipulated through appropriate control actions (e.g.

thermal shocks, pressure shocks). In order to do this, predictive fouling models are

required. With this, the NMPC controller can also be used as a long-term planner of

fouling/defouling operations that can be interfaced with a lower-level controller.
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· Communication of the NMPC controller with the scheduling layer can be established

through multi-stage NMPC formulations. In particular, the scheduling layer provides

the polymer quality set-point that the controller follows. In addition, the controller

must simultaneously take fouling into account.

Chapter 9. Conclusions

187



BIBLIOGRAPHY

Bibliography

[1] D. S. Achilias and C. Kiparissides. Towards the development of a general framework

for modeling molecular weight and compositional changes in free radical copolymer-

ization reactions. J. M. S. -Rev. Macromol. Chem. Phys., C32:183–234, 1992.

[2] J. Albuquerque, L. T. Biegler, and R. E. Kass. Inference in dynamic error-in-variable-

measurement problems. AIChE J., 43:986–996, 1997.

[3] A. Alessandri, M. Baglietto, and G. Battistelli. Moving-horizon state estimation for

nonlinear discrete-time systems: New stability results and approximation schemes.

Automatica, 44:1753–1765, 2008.

[4] N. Arora and L. T. Biegler. Parameter estimation for a polymerization reactor model

with a composite-step trust-region nlp algorithm. Ind. Eng. Chem. Res., 43:3616–

3631, 2004.

[5] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential Equa-

tions and Differential-Algebraic Equations. SIAM, Philadelphia, PA, 1998.

[6] G. Bader and U. Ascher. A new basis implementation for a mixed order boundary

value ode solver. SIAM J. Sci. Comput, 8:483–500, 1987.

[7] Y. Bard. Nonlinear Parameter Estimation. Academic Press, Cambridge, MA, 1974.

[8] R. A. Bartlett. New Object-Oriented Approaches to Large-Scale Nonlinear Program-

ming for Process Systems Engineering. Ph.D Thesis. Chemical Engineering Depart-

ment, Carnegie Mellon University, Pittsburgh, PA, 2001.

BIBLIOGRAPHY

188



BIBLIOGRAPHY

[9] R. A. Bartlett, L. T. Biegler, J. Backstrom, and V. Gopal. Quadratic program-

ming algorithms for large-scale model predictive control. Journal of Process Control,

12:775–795, 2002.

[10] R. D. Bartusiak. Nlmpc: A platform for optimal control of feed- or product-flexible

manufacturing. In Assessment and Future Directions of NMPC, pages 367–282.

Springer, Berlin, 2007.

[11] S. Basu and Y. Bresler. The stability of nonlinear least squares problems and the

cramer-rao bound. IEEE Transactions on Signal Processing, 48:3426–3436, 2000.

[12] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear

quadratic regulator for constrained systems. Automatica, 38:3–20, 2002.

[13] J. Betts. Practical Methods for Optimal Control Using Nonlinear Programming.

Philadelphia, PA, USA, 2001.

[14] J. Betts and W. P. Huffman. Large-scale parameter estimation using sparse nonlinear

programming methods. SIAM J. Optim., 14:223–244, 2003.

[15] L. T. Biegler. Efficient solution of dynamic optimization and nmpc problems. In

Nonlinear Model Predictive Control, pages 219–244. Birkhaüser-Verlag, Basel, 2000.
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ing control of advanced smb chromatographic processes. 16th IFAC World Congress,

Prague, 2005.

[119] V. S. Vassiliadis, R. W. H. Sargent, and C. C. Pantelides. Solution of a class

of multistage dynamic optimization problems. part i - algorithmic framework.

Ind. Eng. Chem. Res., 33:2115–2123, 1994.

[120] V. S. Vassiliadis, R. W. H. Sargent, and C. C. Pantelides. Solution of a class of

multistage dynamic optimization problems. part ii - problems with path constraints.

Ind. Eng. Chem. Res., 33:2123–2133, 1994.
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Appendix A

IPOPT Primal-Dual System

In this Appendix, we provide some details on the implementation and solution of the primal-

dual system in IPOPT [121].

Consider the nonlinear programming problem of the form,

min f(x)

gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU (A.1)

where x ∈ <n are the primal variables with lower and upper bounds xL ∈ <n, xU ∈ <n.

The inequality constraints g : <n → <m are bounded by gL ∈ <m and gU ∈ <m.

After this problem has been communicated to IPOPT, the solver makes an explicit dis-

tinction between the equality (defined with gL = gU ) and inequality constraints to give,

min f(x)

s.t. c(x) = 0

dL ≤ d(x) ≤ dU

xL ≤ x ≤ xU (A.2)

The equality constraints are represented by c : <n → <mc and d : <n → <md denotes the

inequality constraints with bounds dL ∈ <md and dU ∈ <md and m = mc+md. Having done

this, the current implementation of IPOPT reformulates the general inequality constraints
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by adding slack variables and their corresponding bounds,

min f(x)

s.t. c(x) = 0

d(x)− s = 0

x− xL ≥ 0, xU − x ≥ 0

s− dL ≥ 0, dU − s ≥ 0 (A.3)

with s ∈ <nd . As required by IPOPT, if a variable bound does not exist, the user sets the

corresponding value to a large number (−∞ or∞). Nevertheless, for efficiency reasons, the

solver ensures that only the relevant specified bounds (xL, dL > −∞ and xU , dU <∞) are

actually taken into account. This is done by reformulating the problem to,

min f(x)

s.t. c(x) = 0

d(x)− s = 0

(PL
x )Tx− xL ≥ 0, xU − (PU

x )Tx ≥ 0

(PL
d )Td(x)− dL ≥ 0, dU − (PU

d )Td(x) ≥ 0 (A.4)

where PL
x ∈ <n×nxL , PU

x ∈ <n×nxU , PL
d ∈ <md×ndL and PU

d ∈ <md×ndU are projection or

permutation matrices between variables x and the inequalities d(x) and their corresponding

bounds. Symbols nxL, nxU , ndL and ndU represent the number of valid bounds. Accordingly,

notice that the dimensions of xL, xU , dL and dU are also reduced.

In order to derive the primal-dual system, we define the Lagrange function of the refor-

mulated NLP (A.4) as,

L = f(x) + yT
c c(x) + yT

d (d(x)− s)− zT
L

(
(PL

x )Tx− xL

)
− zT

U

(
xU − (PU

x )Tx
)

−νT
L

(
(PL

d )Td(x)− dL

)
− νT

U

(
dU − (PU

d )Td(x)
)

(A.5)

where yc ∈ <mc and yd ∈ <md are the Lagrange multipliers for the equality and inequality

constraints, respectively; zL ∈ <nxL and zU ∈ <nxU are multipliers for the lower and
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upper bounds of the x variables; and νL ∈ <ndL and νU ∈ <ndU are the bound multipliers

corresponding to the slack variables (multipliers of inequality constraints).

After eliminating the bounds by adding a logarithmic barrier term to the objective func-

tion, the primal-dual optimality conditions of problem (A.4) are given by:

∇xL = ∇xf(x) + Jc(x)T yc + Jd(x)T yd − PL
x zL + PU

x zU = 0

∇sL = −yd − PL
d νL + PU

d νU = 0

SlLxZLe− µe = 0

SlUx ZUe− µe = 0

SlLdVLe− µe = 0

SlUd VUe− µe = 0

c(x) = 0

d(x)− s = 0 (A.6)

where JT
c ∈ <n×mc and JT

d ∈ <n×md are the Jacobian matrices of the equality and inequality

constraints and the diagonal matrices,

ZL = diag(zL)

SlLx = diag
(
(PL

x )Tx− xL

)
ZU = diag(zU )

SlUx = diag
(
xU − (PU

x )Tx
)

VL = diag(νL)

SlLd = diag
(
(PL

d )Td(x)− dL

)
VU = diag(νU )

SlUd = diag
(
dU − (PU

d )Td(x)
)
. (A.7)

The optimality conditions (A.6) can be viewed as a set of nonlinear equations parame-

terized in µ. For the solution of this system, we can derive a sequence of Newton steps
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obtained from the linearization of the above expressions,

H∆x+ JT
c ∆yc + JT

d ∆yd − PL
x ∆zL + PU

x ∆zU = −∇xL

−∆yd − PL
d ∆νL + PU

d ∆νU = −∇sL

ZL(PL
x )T ∆x+ SlLx∆zL = −(SlLxZLe− µe)

−ZU (PU
x )T ∆x+ SlUx ∆zU = −(SlUx ZUe− µe)

VL(PL
d )T ∆s+ SlLd ∆νL = −(SlLdVLe− µe)

−VU (PU
d )T ∆s+ SlUd ∆νU = −(SlUd VUe− µe)

Jc∆x = −c(x)

Jd∆x−∆s = −(d(x)− s) (A.8)

where H ∈ <n×n is the Hessian matrix. The system of linear equations (A.8) has the

following structure,



H 0 JT
c JT

d −PL
x PU

x 0 0
0 0 0 −I 0 0 −PL

d PU
d

Jc 0 0 0 0 0 0 0
Jd −I 0 0 0 0 0 0

ZL(PL
x )T 0 0 0 SlxL 0 0 0

−ZU (PU
x )T 0 0 0 0 SlxU 0 0

0 VL(PL
d )T 0 0 0 0 SlsL 0

0 −VU (PU
d )T 0 0 0 0 0 SlsU





∆x
∆s
∆yc

∆yd

∆zL

∆zU

∆vL

∆vU


= −



∇xL
∇sL
c(x)

d(x)− s
SlLxZLe− µe
SlUx ZUe− µe
SlLd VLe− µe
SlUd VUe− µe


(A.9)

we will refer to this set of linear equations as the primal-dual system. In the current

implementation of IPOPT, the primal-dual system is decomposed by eliminating the bound

multipliers leading to the augmented linear system,
H +Dx 0 JT

c JT
d

0 Ds 0 −I

Jc 0 0 0

Jd −I 0 0




∆x

∆s

∆yc

∆yd

 = −


∇xL̄

∇sL̄

c(x)

d(x)− s

 (A.10)

Appendix A. IPOPT Primal-Dual System

206



where,

∇xL̄ = ∇xf(x) + JT
c yc + JT

d yd + PU
x (SlUx )−1µe− PL

x (SlLx )−1µe

∇sL̄ = −yd + PU
d (SlUd )−1µe− PL

d (SlLd )−1µe

Dx = PL
x (SlLx )−1ZL(PL

x )T − PU
x (SlUx )−1ZU (PU

x )T

Ds = PL
d (SlLd )−1VL(PL

d )T − PU
d (SlUd )−1VU (PU

d )T .

Once the augmented linear system is solved, we can obtain step directions for the bound

multipliers from,

∆zL = −zL + (SlLx )−1
(
µe− ZL(PL

x )T ∆x
)

∆zU = zU + (SlUx )−1
(
µe− ZU (PU

x )T ∆x
)

∆νL = −νL + (SlLd )−1
(
µe− VL(PL

d )T ∆s
)

∆νU = νU + (SlUd )−1
(
µe− VU (PU

d )T ∆s
)

(A.11)
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Appendix B

Riccati Decomposition NMPC

In this Appendix, we describe a backward Riccati decomposition strategy for the KKT

system associated with the NMPC problem (5.10). This strategy has been useful in es-

tablishing connections between the advanced-step NMPC controller presented in Chapter

5 and Riccati-like regulators.

To start the discussion, we consider the KKT system,

∆z0 = ∆η

Ql∆zl +Wl∆vl −AT
l ∆λl+1 + ∆λl = 0

W T
l ∆zl +Rl∆vl −BT

l ∆λl+1 = 0

∆zl+1 −Al∆zl −Bl∆vl = 0

 l = 0, . . . , N − 1

QN∆zN + ∆λN = 0 (B.1)

where QN = ∇N
zzL = ∇N

zzF ,Ql = ∇l
zzL,Wl = ∇l

zvL,Rl = ∇l
vvL,Al = ∇zl

fl, Bl = ∇vl
fl.

Here, we want to analyze how does the perturbation ∆η propagates through the prediction

horizon. For this, we follow a Ricatti solution approach of the sensitivity equations.

Starting at l = N we define ΠN = QN so that,

ΠN∆zN + ∆λN = 0 (B.2)

we propagate backwards in time through the dynamic equations,

∆λN = −ΠNAN−1∆zN−1 −ΠNBN−1∆vN−1 (B.3)

Appendix B. Riccati Decomposition NMPC

208



we use the primal equations of ∆vN−1 to put the control in explicit form,

RN−1∆vN−1 = −W T
N−1∆zN−1 +BT

N−1∆λN

RN−1∆vN−1 = −W T
N−1∆zN−1 −BT

N−1ΠN (AN−1∆zN−1 +BN−1∆vN−1)

∆vN−1 = −(RN−1 +BT
N−1ΠNBN−1)−1(BT

N−1ΠNAN−1 +W T
N−1)∆zN−1.

(B.4)

To establish the recursion we use the primal equations of ∆zN−1,

QN−1∆zN−1 +WN−1∆vN−1 −AT
N−1∆λN + ∆λN−1 = 0

QN−1∆zN−1 +WN−1∆vN−1 +AT
N−1(ΠNAN−1∆zN−1 + ΠNBN−1∆vN−1) + ∆λN−1 = 0

(QN−1 +AT
N−1ΠNAN−1)∆zN−1 + (WN−1 +AT

N−1ΠNBN−1)∆vN−1 + ∆λN−1 = 0

(B.5)

plugging (B.4) in (B.6) gives,

ΠN−1∆zN−1 + ∆λN−1 = 0 (B.6)

with,

ΠN−1 = QN−1 +AT
N−1ΠNAN−1

−(AT
N−1ΠNBN−1 +WN−1)(RN−1 +BT

N−1ΠNBN−1)−1(BT
N−1ΠNAN−1 +W T

N−1).

(B.7)

Propagating backwards the recursion stops at the initial conditions,

Π0∆z0 + ∆λ0 = 0

∆z0 = ∆η (B.8)

so that ∆λ0 depends only on the problem data,

∆λ0 = −Π0∆η (B.9)
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Having ∆λ0 and ∆z0 we recover the rest of the variables through the forward recursion,

∆z0 = ∆η

∆λ0 = −Π0∆z0

∆vl = −(Rl +BT
l Πl+1Bl)−1(BT

l Πl+1Al +W T
l )∆zl

∆zl+1 = Al∆zl +Bl∆vl

∆λl+1 = −Πl+1∆zl+1

l = 0, ..., N (B.10)

with,

ΠN = QN

Πl−1 = Ql−1 +AT
l−1ΠlAl−1

−(AT
l−1ΠlBl−1 +Wl−1)(Rl−1 +BT

l−1ΠNBl−1)−1(BT
l−1ΠlAl−1 +W T

l−1)

l = N, ..., 0 (B.11)
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Appendix C

CSTR Reactor Model

In this Appendix, we present the model equations of the nonlinear continuous-stirred tank

reactor (CSTR) presented by Hicks and Ray [59]. The conceptual reactor is sketched in

Figure C.1. The reactor dynamic behavior is described the differential equations,

dzc

dt
=

zc − 1
θ

+ k0z
cexp

[
−Ea

zt

]
(C.1a)

dzt

dt
=

zt − zt
f

θ
− k0z

cexp
[
−Ea

zt

]
+ αv(zt − zt

cw). (C.1b)

The system involves two states z = [zc, zt] corresponding to dimensionless concentration

and temperature, and one control v corresponding to the cooling water flow rate. The model

parameters are zt
cw = 0.38, zt

f = 0.395, Ea = 5, α = 1.95 × 104, θ = 20, and k0 = 300.

These correspond to the cooling water temperature, feed temperature, activation energy,

heat transfer coefficient, reactor residence time, and the pre-exponential factor.

Figure C.1: Schematic representation of nonlinear CSTR reactor.
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Appendix D

Riccati Decomposition MHE

In this Appendix, we describe a forward Riccati decomposition strategy for the KKT sys-

tem associated with the MHE problem (7.3). This strategy has been useful in deriving

strategies to extract MHE covariance information from general NLP solvers and to estab-

lish connections between the advanced-step MHE estimator presented in Chapter 6 and

Kalman filters.

To start the discussion, we consider the KKT system,

P0∆z0 +W0∆w0 −AT
0 ∆λ1 = −rz0

Pl∆zl +Wl∆wl + ∆λl −AT
l ∆λl+1 = −rzl

l = 1, ..., N − 1
PN∆zN + ∆λN = −rzN

Ql∆wl +W T
l ∆zl −GT

l ∆λl+1 = −rwl
l = 0, ..., N − 1

∆zl+1 −Al∆zl −Gl∆wl = −rλl+1
l = 0, ..., N − 1 (D.1)

Starting at time step k = 0,

P0∆z0 +W0∆w0 −AT
0 ∆λ1 = −rz0

Q0∆w0 +W T
0 ∆z0 −GT

0 ∆λ1 = −rw0

∆z1 −A0∆z0 −G0∆w0 = −rλ1 (D.2)

eliminating ∆w0 and ∆z0,

∆w0 = −Q−1
0 W T

0 ∆z0 +Q−1
0 GT

0 ∆λ1 −Q−1
0 rw0

∆z0 = −(P0 −W0Q
−1
0 W T

0 )−1(W0Q
−1
0 GT

0 −W0A
T
0 )∆λ1

+(P0 −W0Q
−1
0 W T

0 )−1(W0Q
−1
0 rw0 − rz0)

∆z0 = −Π0(W0Q
−1
0 GT

0 −W0A
T
0 )∆λ1 + Π0(W0Q

−1
0 rw0 − rz0) (D.3)
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with Π0 = (P0 −W0Q
−1
0 W T

0 )−1. Using the dynamic equations,

∆z1 + (G0Q
−1
0 W T

0 −A0)∆z0 −G0Q
−1
0 GT

0 ∆λ1 = −rλ1 −G0Q
−1
0 rw0

∆z1 −M1∆λ1 = −rM1 (D.4)

with,

M1 = (G0Q
−1
0 W T

0 −A0)Π0(W0Q
−1
0 GT

0 −AT
0 ) +G0Q

−1
0 GT

0

rM1 = rλ1 +G0Q
−1
0 rw0 − (G0Q

−1
0 W T

0 −A0)Π0(rz0 −W0Q
−1
0 rw0) (D.5)

Propagating to k = 1,

∆w1 = −Q−1
1 W T

1 ∆z1 +Q−1
1 GT

1 ∆λ2 −Q−1
1 rw1

∆z1 = −(P1 −W1Q
−1
1 W T

1 + M−1
1 )−1(W1Q

−1
1 GT

1 −AT
1 )∆λ2

+(P1 −W1Q
−1
1 W T

1 + M−1
1 )−1(W1Q

−1
1 rw1 − rz1 −M−1

1 rM1)

∆z1 = −Π1(W1Q
−1
1 GT

1 −AT
1 )∆λ2 + Π1(W1Q

−1
1 rw1 − rz1 −M−1

1 rM1) (D.6)

with Π1 = (P1 + M−1
1 −W1Q

−1
1 W T

1 )−1. So that,

∆z2 + (G1Q
−1
1 W T

1 −A1)∆z1 −G1Q
−1
1 GT

1 ∆λ2 = −rλ2 −G1Q
−1
1 rw1

∆z2 −M2∆λ2 = −rM2 (D.7)

with,

M2 = (G1Q
−1
1 W T

1 −A1)Π1(W1Q
−1
1 GT

1 −AT
1 ) +G1Q

−1
1 GT

1

rM2 = rλ2 +G1Q
−1
1 rw1 − (G1Q

−1
1 W T

1 −A1)Π1(rz1 + M−1
1 rM1 −W1Q

−1
1 rw1)(D.8)

the process stops at k = N where,

∆zN −MN∆λN = −rMN

PN∆zN + ∆λN = −rzN

∆zN = −ΠN (rzN + M−1
N rMN

) (D.9)
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This solution procedure can be generalized as,

∆zN = −ΠN (rzN + M−1
N rMN

)

∆λl = M−1
l (∆zl + rMl

)

∆zl−1 = −Πl−1(Wl−1Q
−1
l−1G

T
l−1 −AT

l−1)∆λl + Πl−1(Wl−1Q
−1
l−1rwl−1

− rzl−1
−M−1

l−1rMl−1
)

∆wl−1 = −Q−1
l−1W

T
l−1∆zl−1 +Q−1

l−1G
T
l−1∆λl −Q−1

l−1rwl−1

l = N, ..., 1 (D.10)

where,

Π0 = (P0 −W0Q
−1
0 W T

0 )−1

Ml+1 = (GlQ
−1
l W T

l −Al)Πl(WlQ
−1
l GT

l −AT
l ) +GlQ

−1
l GT

l

Πl+1 = (Pl+1 + M−1
l+1 −Wl+1Q

−1
l+1W

T
l+1)

−1

ΠN = (PN + M−1
N )−1

l = 0, ..., N − 1 (D.11)
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Appendix E

LDPE Tubular Reactor Model

In this appendix, we present a model that describes the dynamic behavior of the indus-

trial LDPE tubular reactor described in Chapter 8. The model has been used to perform

parameter estimation, state estimation and optimal control tasks.

E.1 Material Balances

The dynamics of the LDPE reactor core can be neglected since the time constant is small

compared to that of the reactor wall and jacket [73]. With this, the design equations

describing the evolution of the reacting mixture at the core of each zone become [74, 125],

Initiator(s)

∂FIi

∂x
= −1

ν
kdiFIi i = 1, . . . , NI (E.1)

Monomer and Comonomer

∂Fmi

∂x
= −Fmi

ν

kIiCR +
2∑

j=1

kpjiλ
j
0 +

2∑
j=1

kfmjiλ
j
0

 i = 1, ..., 2 (E.2)

Chain-transfer Agent(s)

∂FSi

∂x
= −FSi

ν

 2∑
j=1

ksijλ
j
0 +

2∑
j=1

kspijλ
j
0

 i = 1, ..., NS (E.3)

Momentum Equation
∂P

∂x
= −2fr

ρν2

di
1× 10−6 (E.4)
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E.1 Material Balances

Long-Chain Branching (LCB), Short-Chain Branching (SCB)

1
A

∂FLCB

∂x
=

2∑
i=1

(kfpi1 + kfpi2)λi
0µ1 (E.5)

ν

A

∂FSCB

∂x
= ν

(
2∑

i=1

kbiλ
i
0

)
+

1
A

Ns∑
j=1

(kspj1λ
1
0 + kspj2λ

2
0)Fsj (E.6)

”Dead” Polymer Chains Moments

1
A

∂Fµ0

∂x
=

2∑
i=1

∆iλ
i
0 +

1
2

2∑
i=1

2∑
j=1

ktcijλ
i
0λ

j
0 − µ1

2∑
i=1

2∑
j=1

kfpijλ
i
0 (E.7)

1
A

∂Fµ1

∂x
=

2∑
i=1

Cmi

 2∑
j=1

kpjiλ
j
0

 (E.8)

1
A

∂Fµ2

∂x
= 2

2∑
i=1

2∑
j=1

kpjiλ
j
1Cmi +

2∑
i=1

2∑
j=1

ktcijλ
i
1λ

j
1 (E.9)

Primary Radicals

FR =
ν A

(kI1Fm1 + kI2Fm2)

(
NI∑
i=1

2ηikdiFIi

)
(E.10)

”Live” Polymer Chains Moments

Fλ1
0

=

√
(kI1Fm1 + kI2Fm2)FR

(ktd11 + ktc11) + 2a(ktd12 + ktc12) + a2(ktd22 + ktc22)
(E.11)

Fλ2
0

= aFλ1
0

(E.12)

Fλ1
1

= ν A
B1Γ∗1 − A2Γ∗1
A1 − B1B2

(E.13)

Fλ2
1

= ν A
−Γ∗2 − B2λ

1
1

A2
(E.14)

where,

a =
(kfm12 + kp12)Fm2 + kfp12Fµ1

(kfm21 + kp21)Fm1 + kfp21Fµ1
(E.15)

A1 = −

kp12Cm2 + ∆1 +
2∑

j=1

ktc1jλ
j
0

 (E.16)

A2 = −

kp21Cm1 + ∆2 +
2∑

j=1

ktc2jλ
j
0

 (E.17)
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E.1 Material Balances

B1 = kp21Cm1 (E.18)

B2 = kp12Cm2 (E.19)

Γ∗i =

kIiCR +
2∑

j=1

kfmjiλ
j
0 +

2∑
j=1

kpjiλ
j
0

Cmi (E.20)

+λi
0

 Ns∑
j=1

ksjiCsj +
Ns∑
j=1

kspjiCsj

+ µ2

 2∑
j=1

kfpjiλ
j
0

+ (kβi + k′βi)λ
i
0, i = 1, .., 2

(E.21)

∆i =
2∑

j=1

kfmijCmj +
Ns∑
j=1

ksjiCsj +
2∑

j=1

ktdijλ
j
0 +

2∑
j=1

kfpijµ1 + kβi + k′βi, i = 1, .., 2

(E.22)

Note that all the variables depend on both the space x and time t dimensions. The molar

flow rate Fj for every component j in the mixture can be expressed in terms of the fluid

velocity, ν, and its molar concentration Cj as,

Fj = ν ACj (E.23)

where A is the reactor cross-sectional area at a given axial position. Having the molar flow

rates, the fluid velocity ν is calculated from the total molar flow rate and the mixture density

(e.g. concentrations) from the above expression. The kinetic rate constants k are a function

of temperature and pressure and are obtained from Arrhenius-type expressions of the form

in (8.5). The density of the gas-polymer mixture ρ is computed from the Lee-Kesler equation

of state and from complex empirical correlations. From the schematic representation of the

reactor in Figure 8.1, we can see that the initial conditions of the differential equations at

each zone are determined from material balances at the feed points.

Macromolecular properties of the polymer can be obtained in terms of the leading mo-

ments of the univariate chain-length distributions. Accordingly, the polymer number- and
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weight-average molecular weights and polydispersity are given by,

MWn = MW0
Fµ1

Fµ0

(E.24)

MWw = MW0
Fµ2

Fµ1

(E.25)

PDI =
MWw

MWn
(E.26)

where MW0 is the average molecular weight of a building unit in the polymer chain. The

number of short- and long-chain branches per 1000 atoms can be obtained from,

LCB = 500
FLCB

Fµ1

(E.27)

SCB = 500
FSCB

Fµ1

(E.28)

The polymer density ρpol is correlated to the number of short-chain branches per 1000

carbon atoms,

ρpol = c0 + c1 SCB (E.29)

The polymer melt index can be correlated to the rest of the macromolecular properties as,

log10(MI) = c2 + c3 log10(MWw) + c4 log10(PDI) + c5 log10(LCB). (E.30)

where cj , j = 0, ..., 5 are correlation parameters.

E.2 Energy Balances

We make use of Figure E.1 to illustrate the different components of the dynamic energy

balance equations. The reacting mixture flowing inside the reactor is assumed to be at

steady-state at all times. Accordingly, the evolution of reactor core temperature can be

described by the following ordinary differential equation,

ρ cp ν
∂T

∂x
=

πdinUin

A
(TW − T )−∆Hr

(E.31a)

T (t, 0) = T inlet(t) (E.31b)
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The axial dimension along each one of the zones is denoted by x ∈ [0, xL] where xL is

the total length of a particular zone k. The time dimension is denoted by symbol t. The

above system of equations is defined for all the reactor zones k = 1, ..., NZ . The reacting

mixture temperature at a particular zone is denoted by T and the wall temperature is

represented by TW . The gas-polymer mixture heat capacity is represented by cp and is

computed from thermodynamic relations. The overall heat of polymerization generated by

chain propagation is represented by term ∆Hr. The overall heat transfer coefficient at the

core-wall interface is represented by Uin and din is the inner diameter. The time-varying

inlet temperature at a particular zone T inlet(t) is computed through boundary conditions

consisting of energy balances at the feed points.

The reacting mixture is cooled down through a jacket cooling system. Due to the ex-

tremely high operating pressures, a thick stainless steel wall exists at the interface. Since

this material presents a small capacitance, the dynamic responses of the reactor wall tend

to dominate (order of minutes) and need to be captured by a dynamic model. In addition,

due to the large thickness, there exists a temperature gradient across the radial position

of the wall. A rigorous way to account for this would be to incorporate a two-dimensional

energy balance along the axial and radial positions. However, this approach would result

in a three-dimensional PDE defined at each zone, which would increase significantly the

complexity of the reactor model. In order to avoid this, we follow the approach of Häfele

and coworkers [56]. Here, we assume that the entire radial profile can be lumped into an

average radial wall temperature. Accordingly, the wall temperature profile along the axial

and time dimensions can be described by a parabolic PDE of the form,

ρW cWp
∂TW

∂t
− κW ∂2TW

∂x2
=

πdinUin

AW
(T − TW )

−πd
outUout

AW
(TW − T J) (E.32a)

TW (0, x) = TW,0(x) (E.32b)

−AWκW ∂TW

∂x
(t, 0) = Q̇in

k (E.32c)

−AWκW ∂TW

∂x
(t, xL) = Q̇out

k (E.32d)

where T J denotes the temperature of the cooling water flowing along the jacket and TW,0(x)
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are the initial conditions of the wall temperature profile. Symbols ρW , cWp and κW denote

the density, heat capacity and thermal conductivity of the stainless steel wall, respectively.

The overall heat transfer coefficient at the interface between the wall and the jacket is

denoted by Uout, AW is the cross-sectional area of the wall and the outer diameter is dout.

The axial inlet and outlet heat conduction flows across the wall at each zone k are denoted

by Q̇in
k and Q̇out

k , respectively. It is important to note that there exists heat flow continuity

at the zone joints. Therefore, Q̇in
k = Q̇out

k−1, k = 2, ..., NZ − 1. At the reactor extremes,

the heat flows Q̇in
0 and Q̇out

NZ
can be calculated through natural convection expressions or

can be assumed to be zero for a sufficiently long pipe.

Each reactor zone is equipped with an independent jacket cooling system where cooling

water flows countercurrently to the reacting mixture inside the pipe. We assume plug flow

in the jacket and negligible heat losses to the environment (perfect insulation). Accordingly,

the dynamic evolution of the cooling water temperature at each zone can be described by

the following first-order PDE,

ρJ cJp

(
∂T J

∂t
− νJ ∂T

J

∂x

)
=

πdoutUout

AJ
(TW − T J) (E.33a)

T J(t, xL) = T J,inlet(t) (E.33b)

T J(0, x) = T J,0(x) (E.33c)

where ρJ , cJp and νJ are the density, heat capacity and velocity of the cooling water. The

cross-sectional area of the jacket annulus is denoted by AJ . The time-varying inlet tem-

perature of the cooling water is denoted by T J,inlet(t) and the initial conditions for jacket

temperature profile are given by T J,0(x).

E.3 Model Notation

A = cross-sectional area, m2

Cj = molar concentration of jth component, kgmol/m3
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Figure E.1: Schematic representation of LDPE reactor core-wall-jacket interface.

cp = reacting mixture heat capacity, kJ/kg·K

cJp = cooling agent heat capacity, kJ/kg·K

d = diameter, m

Dr,s = concentration of ”dead” polymer chains with r monomer units and s comonomer

units, kmol/m3

Fj = molar flow rate of the jth component, kgmol/s

Fc = cooling agent flow rate, kg/s

fr = Fanning friction factor

U = heat transfer coefficient, kW/(m2K)

kbi = intramolecular (backbiting) chain transfer of ”live” polymer chains of type i, 1/s

kdi = decomposition rate constant of the ith initiator, 1/s

kIi = initiation rate constant for the ith monomer, m3/gmol·s

kfmij = rate constant for the transfer of ”live” polymer chains of type i to the j monomer

m3/gmol·s
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kfpij = rate constant for the transfer of ”dead” polymer chains of type i to the j monomer

m3/gmol·s

kpij = propagation rate constant for the ”live” polymer chains ending in the ith monomer

unit with the jth monomer, m3/gmol·s

ksij = rate constant for transfer of ”live” polymer chains of type i to chain-transfer agent

j, m3/gmol·s

kspij = rate constant for incorporation of CTA j to ”live” polymer chains of type i,

m3/gmol·s

ktcij = termination by combination rate constant m3/gmol·s

ktdij = termination by disproportionation rate constant m3/gmol·s

kβi = β-scission rate constant for secondary radicals, 1/s

k′βi = β-scission rate constant for tertiary radicals, 1/s

LCB = number of long-chain branches per 1000 carbon atoms

MWn = number-average molecular weight, kg/kgmol

MWw = weight-average molecular weight, kg/kgmol

MW0 = molecular weight of a building unit, kg/kgmol

NI = number of initiators

NS = number of chain-transfer agent(s)

Q = heat flow kJ/s

P = reactor pressure, atm

Ri = total concentration of ”live” polymer chains ending in a radical of type i, kgmol/m3

SCB = number of short-chain branches per 1000 carbon atoms
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T = reactor temperature K

T J = cooling agent temperature, K

TW = wall temperature, K

ν = fluid velocity, m/s

Greek Letters

−∆Hr = total heat of reaction, kJ/kgmol

ηi = efficiency of the ith initiator in the mixture

λi
n = n-th order single moment of the ”live” polymer chains of type i, kgmol/m3

µn = n-th order single moment of the ”dead” polymer chains, kgmol/m3

ρm = reacting mixture density, kg/m3

ρpol = polymer density, g/cm3

κ = thermal conductivity, kJ/m·K

Subscripts and Superscripts

Ii = i-th initiator

Si = i-th chain-transfer agent

mi = i-th monomer

R = primary radicals

W = wall

J = jacket

in = core

out = jacket
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